Chapter 6:
Deflections and Stability

Introduction
Calculation of deflections at the point of collapse
The effect of deflection on the collapse load

Concluding remarks
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6 DEFLECTIONS AND STABILITY

6.1 INTRODUCTION

Methods for finding the collapse loads of steel frames were examined in detail in
chapters 3, 4 and to some extent, 5. In the virtual work method, for example, the
collapse load was found by considering small (virtual) deformations of the
collapse mechanism. However, the shape of the structure before deformation of

. the mechanism was assumed to be the same as when there was no load on the
structure. In other words, all deformation before collapse was ignored. There
must be deformation before collapse, but how significant is it?

It is not sufficient to ensure that the structure is strong enough to resist the
applied loading with an adequate load factor against collapse. It is also necessary
to make certain that deflections do not become excessive. Consider the pitched
portal frame shown in figure 6.1. The frame carries the rails for an overhead
travelling crane. The crane-wheels which run on the rails will only have a finite
amount of sideways movement. Consequently the dimension L is a critical part

~of the design. If it changes too much, due to deflection of the frame, the wheels
will jam and the crane will no longer be travelling.

crane

o

~ Figure 6.1

The deflections must be checked. Under normal working loads the structure
~.should still be elastic so that it would be possible to find the deflections by
elastic analysis. This is rather illogical in a structure designed by plastic methods:
after all, one of the main reasons for using the plastic methods is that they avoid
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114 PLASTIC METHODS FOR STEEL AND CONCRETE STRUCTURES

the tedious calculations of the glastic methods. There is another reason for being
wary of the elastic methods. Figure 6.2 shows a possible load deflection curve

for the frame in figure 6.1. Although the structure would be elastic at working
loads, plastic design would produce a structure with bending moments close to
the plastic moment at certain critical sections. It would only need a small
overload on the crane for plastxc hmges to form with a large increase in the
deflections. Overhead-crane : ding — 2
quickerto-make-onediferather-thantwa! Aloglcal solutlon would be to limit
the actual deflections at the point of collapse, especially if they can be calculated
conveniently.

load &

overload

normal working loads:
plastic design

normal working loads: i
elastic design

B

=
deflection

Figure 6.2

There is another possibility. The deflections before collapse may significantly
reduce the collapse load of the structure. It is well known that deflections
reduce the stiffness of struts (the so-called P—§ effect [14]) and the same thing
can happen to frames. The problem is more serious in more flexible structures,
where the deflections can cause an unexpected collapse mechanism due to
overall buckling (instability) of the frame.

Originally only mild steel structures were designed by plastic methods, but
nowadays higher strength steel structures are handled in the same way. The
reduced ductility (see figure 1.5) is usually adequate for the formation of a
collapse mechanism, but the higher yield stress means that smaller sections than
would be required with mild steel can be used. This results in a more flexible
structure with larger deflections. Obviously the problems caused by deflections
are likely to be more severe. This must always be borne in mind when using higher
strength steels. o
mﬁ of this chapter describes a straightforward method for calculating
deflections at the point of collapse. The second part is an examination of the
effects of deflection on the collapse load. '

6.2 CALCULATION OF DEFLECTIONS AT THE POINT OF COLLAPSE
6.2.1 Background Theory

One essential assumption that was used in finding collapse loads was that all
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plastic rotation occurs at the plastic hinges. This means that between the plastic
hinges the members are elastic. Any frame can be broken down, therefore, into
individual elastic members, with all plastic behaviour occurring at the ends of the
members. (There will be some members, of course, whose end moments are less
than the plastic moment.)

The deflections of the structure can be represented by the displacements of the
ends of each member. Since the members are elastic, the end moments and the
elastic end displacements can be related by the slope deflection equatlons [1]

Using the notation in figure 6.3 these are

ET
MAB _3(46'&5 +29BA —6 )‘l'(FEM)AB

(6.1)
EI §
MBA:“'E 28AB+43BA_6 +(FEM)BA
Mag
(Fem 2
Figure 6.3
The diagram shows the positive sense of moments and deformation#. This
clockwise positive convention has been observed in the following examples.
Equation 6.1 can be rearranged to give
b
3AB L R 6EI (Mg — Mpa) — 6_13'} [2(FEM)sp — (FEM)ga ]
(6.2)
L
Opa =7 6E] — (=Mpp +2Mp,) — El [— (FEM),p + 2(FI?M)BA]

The modified slope deflection equations 6.2 can be used to find deflections at
the point of collapse, when the final plastic hinge has just formed but has not
started to rotate. It is easiest to explain the process by looking.at examples.

6.2.2 Fixed End Beam with UDL
The beam and various stages of the analysis are shown in figure 6.4.
First Stage

The first stage of the analysis is to determme the collapse mechanism and collapse
load (or load factor).

AT
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Figure 6.4

In this example, the problem is symmetric and the free and reactant BM
method can be used. The mechanism and bending moment diagram are shown
in figures 6.4b and c. From the geometry of the BMD :

AwL?
8

=2Mp

so that when M, = 3wL?[16
A, =3

Second Stage

It is now necessary to divide the structure into individual (elastic) members and

write down the modified slope deflection equations for each member.
The beam can be divided into two members, AB and BC, between the plastic

hinges. The end moments for both members are equal to the plastic moment Mp,.

The difficulty is to determine the direction in which they act. This can be done
_ by noting that the end moments resist the end rotations, therefore they must
{ act in the opj;)s_fi‘g sense to the plastic rotations. The fixed end moments in AB
and BC are the standard case of a UDL (3w per unit length) on a fixed beam (of
span L/2). The various moments are summarised in figure 6.4d.
L—'le ﬁﬁaW[%)L:ELL_L
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The slope deflection equations can now be written down for each member

2% L L wL? wL?
fap=—rt——(2M, + M) ———=\-——o -7
aB =7 ¥ opr M Mp) 1251( 8 16)
g, =2 MEL+wL3
AB™ 1" T 12EI  64EI

98 - L L [wL? sz)
Bun =2 4 —(M, — 2M,) — —— | — +—
pa =7 * o Mo — 2Mo) lZEI(l6 8
g, =B _ Ml wL?

BA ™[ T 12EI 64EI

2% L L wL?  wlL?
Ornp = — — + —— (IMy — Mp)———| — ——
sc == *Topr Mo~ ¥p) 1251( 8 16

3
E+MEL+ wil

O = —
BC ™™ 1 T 12EI 64EI

and similarly

3
9oy =28 Mol WL

L 12EI 64EI
Notice the term — 28/L in the last two equations. The sign convention in figure
6.3 defined the deflection 8 as positive when the right-hand end (B) sank below the
left-hand end (A), causing a clockwise rotation of the whole member. In the
example, BC is rotating anticlockwise, hence the negative sign.

Third Stage

The deflection must now be calculated when the last plastic hinge has just
formed. But which is the last hinge? There is no way of knowing this, so each
hinge in turn must be assumed to form last, and a deflection calculated for each
one.
If the hinge at A (or at C because of symmetry) is the last to form, there will
have been no rotation at A (or C) because it is a clamped end. Thus

f = ..2E _&L_ + .EL_a -

AB L T 12EI  G4EI

so that

2 _ ML wL3_£(3 1)

R —_—
L 12EI 64EI EI \12.16 64

8=0
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118 PLASTIC METHODS FOR STEEL AND CONCRETE STRUCTURES

If the hinge at B is the last to form, there will have been no plastic rotation at B
at the point of collapse. The whole beam (AC) will still be continuous at B. This
can only be achieved if .

BBA. o= 3]3(: . : + HPL
Substituting for g 4 and Ogc gives \/ Veer
2% ML wh_ 28wl

L~ 12EI 64EI |, 64EI

- 2
45_2M,L dwL® 2wL®( 3 1 - 3wl o
+ S e

L 12EI " 64EI  EI (12;15*64) (ffb W{o n GReY

_4wL? b

64El
s o wL? :

64E1 1

The question now is which of these values is correct?

Fourth Stage

One way to decide is to substitute the values of § back into the slope deflection
equations and obtain the rotations.

The results of this are summarised in table 6.1. Inspection of the table shows
that the first deflected shape is ridiculous. The only conclusion is that the last
hinge forms at B and the deflection at the point of collapse is wL?/64EI In a
more complicated structure it would be tedious to set up a much enlarged
version of table 6.1. Instead the deflection can be chosen by using the displacement
theorem. This states ‘Let displacements be predicted on the basis of each plastic

hinge forming last. If in the loading process no hinge once formed has been
unloaded, the largest displacement so predicted will be the correct one.’

i.e \n]ﬁhtfrf exYernal wavle —1 Smﬂ\“oaf /owﬂj JL\CIN’ (Uﬂsﬁ&miem)i

Table 6.1
Last Deflected
Hiffige 8 OaB 0pa Opc  fOcs hace
3 3
L # astic hinge
AorC @ 0 ol o
32ET 3251

B R 0 0
; 32E]
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Since the calculations are based on conditions at collapse there can be no
indication of any hinge which may have formed and then disappeared. However,
it is unusual for that to happen. Thus the largest deflection is normally correct.

L

6.2.3 Portal Frame Example

This second example brings out two more important points. The analysis is
summarised in figure 6.5.
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Figure 6.5
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First Stage

The virtual work method shows that the frame collapses by the combined
mechanism when A; = 50. The BMD at collapse and the collapse mechanism are
shown in figures 6.5b and c. :

Second Stage

The structure can be broken down into four members as in figure 6.5d. There
are no fixed end moments in this case because the point loads are at the ends of
members. There is no problem in deciding the direction of the end moments *
except at B. Here there is no plastic hinge in the mechanism. To decide on the
direction of the end moments, imagine that the BM at B is increased until a
hinge forms. The end moments act to resist the rotation of that imaginary hinge,
as shown in figure 6.6.

increase in BM
33 to produce a plastic hinge

:

50 end moments
atB

S rotation of
imaginary
hinge from
sign of BM

Figure 6.6

Two deflections are required in order to write down the slope deflection
equations. It is assumed that the vertical deflection in the beam, §, is small so
that the tops of both columns move A horizontally. (This is the same assumption
as used in calculating collapse loads.) The slope deflection equations are '

S A 1250

V] =— 4 —(— o e
oA 551( A0=30)= 2 6EI
5 A 1000

g =4 — = 4 —
BA S+6E1(+100+100) S+6EI

5 ‘5 5
Bac =—+ —(— 100+ 100) ==
Be TSt o= 100 1I00) =



