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a b s t r a c t

Contact interface dynamics depends on contact surfaces characteristics and the interaction of these
surfaces in normal and tangential directions. In fact the interaction in normal direction affects the
behavior in tangential direction through changing the size of the contact area. The level of vibration in
normal direction is inversely proportional to the contact stiffness in tangential direction and the friction
force. In this paper the effects of micro-vibro-impact developing at the boundary of a non-linear beam on
the parameters of micro-slip mechanism are studied. Also the variation of the contact stiffness in
tangential direction is modeled as a function of vibration amplitude level.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Non-linear dynamic simulation of mechanical structures has
become a prominent point of interest during the past decades. The
frictional contact interface is of the most remarkable source of
non-linearity in structures. The development of a precise numer-
ical method to simulate the non-linear mechanisms at contact
interfaces and identification of their parameters are main concerns
in structural response analysis. The contact interface dynamics
depend on several factors [1] such as the sliding speed [2–4],
surface roughness [5–12], temperature [1,14], normal force [12,15–20]
and the dynamic interaction of the contacting bodies [21–27].
Precise modeling is possible when the above-mentioned factors
are considered.

Stribeck [2] observed that the coefficient of friction has differ-
ent behaviors in low and high relative velocities. The coefficient of
friction is inversely dependent on the relative velocities. Heslot
et al. [3] proposed a heuristic model of low velocity friction.
In their model, creep process controls the low speed dynamics but
at higher velocities, a crossover to inertial dynamics is observed.
Liu et al. [4] presented a model treating both the elastohydro-
dynamic and the contact friction in lubricated rough circular
contact. They showed that the friction parameters obtained by

this model are in good agreement with the experimental Stribeck
curves measured from a ball-on-disk test setup.

The friction parameters are influenced by surface texture and thus
roughness parameters. Whereas, this influence is dependent on many
factors, for instance, the presence of impurities or liquid films in the
tribological contact, among others. One of the most important factors
affecting the frictional parameters during sliding is surface texture.
Plenty of attempts have been made to study this effect. Staph et al. [5]
have studied the results of disk tests designed to examine the effect of
surface texture and roughness on scuffing and related behavior. They
observed that under different conditions, an increase in the composite
surface roughness increases the friction coefficient at scuffing. The
effects of surface roughness on lubricant film characteristics under
conditions of combined normal and sliding motion have been studied
in [6]. Mattaa et al. [7] used a new slider-on-strip tribometer to study
the tribological behavior of traditional and new tool materials. They
observed that the composition of the tool steel does not affect the
friction between the tool and the work piece very much. However, the
friction is notably influenced by the surface roughness and topography
of the tool.

Temperature is another significant factor which can influence
contact parameters. However, no model has been proposed to
simulate the variation of these parameters with temperature, so
far. Filipi et al. [13] investigated the variation of contact tangential
stiffness under a wide range of contact normal loads, relative
displacements, excitation frequencies and contact specimens. They
observed that as the temperature increases the contact stiffness
decreases. Schwingshackl et al. [14] designed a test rig to characterize
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friction contact interfaces. An intense reduction of friction coefficient
from room temperature to 200 1C and a more or less constant trend
thereafter was observed.

One of the other significant factors remarkably affecting the
contact parameters is normal contact force. Through different
methods of contact evaluation, it has been revealed by many
researchers that regardless of the contact roughness, the contact
tangential stiffness is non-linearly proportional to the normal
contact load as a consequence of contact stiffness dependent on
real contact area. Sextro [12] developed a contact model describ-
ing the variation of contact tangential stiffness vs. applied normal
load for different amounts of contact roughness. Sherif and Kossa
[15] investigated the effect of normal load on the normal and
tangential stiffness between two elastic bodies. The measurement
of ultrasonic waves’ reflection from contact interfaces has been
employed to characterize the contact parameters [16–18]. Jiang
et al. [19] proposed a contact model based on fractal theory to
investigate the contact topography and elastic–plastic deformation
of asperities between rough surfaces of machined plane joints.
Kartal et al. [20] proposed an experimental method to measure the
contact tangential stiffness. They used the digital image correla-
tion to measure the local displacement field. It was found that the
tangential contact stiffness is approximately proportional to the
nominal contact area and normal pressure.

Contact interfaces are usually subjected to dynamic loads;
consequently the contact parameters are affected by the loading
conditions. The aim of this paper is to investigate how dynamic
normal loads influence the contact characteristics especially tan-
gential contact stiffness. As an earlier attempt in this area, Godfrey
[21] conducted some experiments to determine the effect of
dynamic normal loads on tangential contact stiffness. In his
experiments, a rider including three balls slides along a flat steel
plate under some weight load. The plate was excited to vibrate at
different frequencies by means of a speaker. Friction coefficient,
acceleration and electrical resistance of the contact interface were
measured. It was observed that whether the contact interface is
lubricated or not, the apparent kinetic friction decreased rapidly

after that the vibration acceleration exceeded the gravity accel-
eration. Using an empirical stiffness relation, Tolstoi et al. [22,22]
modeled the contact interface between two surfaces as a non-
linear spring. It was theoretically and experimentally shown that
the friction reduction due to normal vibration could reach 30% for
various steel surfaces. Tolstoi [22] experimentally showed that by
exciting the sliding pair by a swept sine wave, the average friction
decreases when the contact was driven at its normal contact
frequency. Hess and Soom [24] studied the non-linear vibration at
a Hertzian contact by using the multiple scales method. They
found that as a result of Hertzian stiffness, the average normal
contact deflection during vibration is smaller than the static one
under the same average load. This shows that the normal vibration
leads to a reduction of the average area in contact and conse-
quently the friction force. Chowdhury and Helali [25,26] experi-
mentally investigated the effect of external vertical vibration
on the friction property of mild steel, glass fiber-reinforced plastic
and cloth-reinforced ebonite. Their results showed that the frict-
ion coefficient decreases with the increase of the frequency and
amplitude of vertical vibration for the above-mentioned materials.
Kostek [27] studied the influence of an external normal harmonic
force upon friction force reduction for a system consisting of two
bodies in planar contact. He concluded that the main reason of
reduction in friction force is dynamical effect, e.g. stick-slip regime.

In this paper the effect of vibration in normal direction of a contact
interface on the contact parameters in tangential direction is studied.
The stiffness in stick regime of the contact interface in tangential
direction is formulated by employing the model proposed by Richard
and Abbott [28]. This model is based on a formula to reproduce the
elastic–plastic behavior of materials and has initially been used to
simulate the static monotonic response of joints [29]. The remaining of
this paper goes as follows: in Section 2, a brief explanation of non-
linear mechanisms at contact interfaces is presented. Section 3 deals
with the experimental case study and mathematical modeling. In
Sections 4 and 5, parameter identification of the contact interface is
considered and the variation of tangential contact stiffness is modeled.
Finally the conclusions are drawn and references are presented.

Nomenclature

A beam cross-sectional area
a maximum response amplitude at driving point
b beam width
dp excitation point distance from clamped end
E beam elastic modulus
Ee elastic modulus
Ep plastic modulus
ei interface tangential stiffness in stick regime (Valanis

model)
e0 interface tangential stiffness in micro-slip regime

(Valanis model)
f(t) excitation force
h beam thickness
I area moment of inertia
Jp mass moment of inertia of the pin
kb axial stiffness of the beam
KHC stiffness constant in Hunt–Crossley model
L beam length
mp pin mass
ms hanging block mass
N number of samples used in optimization
N(t) normal contact force
n a constant number

nHC a constant number in Hunt–Crossley model
qi(t) ith modal coordinate
r pin radius
S initial slope of moment–rotation curve
Sp the slope of moment–rotation curve in high rotations
Sy yield stress
S(t) tangential contact force (friction force)
T kinetic energy
u axial displacement of the beam tip
V potential energy
X tangential displacement amplitude
Xy tangential displacement amplitude in the beginning of

macro-slip
y(x,t) lateral deflection of the beam
Z a physical parameter
ρ mass density of the beam
s stress
ε strain
η(t) normal displacement of contact point
ξ(t) tangential displacement of contact point
λHC damping constant in Hunt–Crossley model
δ0 static deflection of contact point due to preload
�δWnc work of non-conservative forces
φi ith non-linear normal mode of the beam
p vector of unknown parameters
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2. The contact interface dynamics

The non-linear nature of the contact interfaces can be attributed
to two mechanisms: micro-/macro-slip and vibro-impact (slap)
mechanisms. Slip occurs when two adjacent surfaces in contact
move tangentially relative to each other as the consequence of an
external applied load. Depending on the level of applied load, contact
interface may experience three different regimes: stick, micro-slip or
macro-slip regimes. Under low level of vibration amplitudes the
interface is in stick and its behavior is linear. By increasing gradually
the level of vibration, small regions in the contact interface begin to
slip which is called micro-slip. Eventually when all area in contact
starts to slip, macro-slip occurs.

Among several models ever been proposed for taking into
account the effect of slip mechanism in mathematical representa-
tion of the structures, Valanis model [30,31] has received more
attention during the past decades. In this model a non-linear
differential equation governs the tangential force in contact inter-
face, i.e.

_S¼
e0 _ξ 1þ λ

e0
sgnð_ξÞðetξ�SÞ

h i
1þκ λ

e0
sgnð_ξÞðetξ�SÞ ; λ¼ e0

α0 1�κete0

� � ð1Þ

where S is the contact tangential force, ξ and _ξ are relative
tangential displacement and velocity, respectively, e0 and et are
the contact shear stiffness in stick and macro-slip regimes, κ is a
control parameter to define a smooth transition from stick regime
to macro-slip due to micro-slip in the contact interface and α0 sets
the yield point in the contact interface hysteresis loop, i.e. the
diagram of contact force vs. relative displacement.

As a result of differential structure of Valanis model, slip force in
each moment depends on not only the states at that moment but
also the previous states, which is a distinct characteristic of friction
phenomenon. Also, the Valanis model uses relatively minimum
number of parameters among the other friction models to describe
the friction phenomenon. This is especially important when opti-
mization algorithms have to be used for parameter identification.
The parameters of the Valanis model have physical meaning and can
be interpreted by using the hysteresis loop of friction force. These
properties make the Valanis model suitable for representing the slip
mechanism in structures.

Under high level of vibrations, vibro-impacts (or slaps) happen
in contact interfaces. This phenomenon develops when nearby
zones of the contact interface move toward each other recipro-
cally. When these zones completely separate from each other and
come to contact repeatedly, macro-vibro-impact (macro-slap)
takes place. Micro-vibro-impact (micro-slap) develops when the
applied external force is not high enough to completely separate
the adjacent surfaces from each other. In this condition micro-
scopic impacts develop between contact surfaces and a small
amount of energy is dissipated by this mechanism [32]. Fig. 1
shows the region of contact at which micro-impact happens. As
these local impacts with variable area in contact occur repeatedly,
micro-vibro-impact mechanism develops.

The most widely used model to represent the normal force
during impact is Hunt–Crossley model [33] which is based on the
Hertzian contact theory. Considering micro-impact as a part of a
complete impact in which the contact surfaces do not separate
from each other completely, one can employ this model to take
into account the effect of vibratory normal force. The contact
normal force by this model is expressed as

NðtÞ ¼ KHCðδþδ0ÞnHC ð1þλHC _δÞ ð2Þ
where NðtÞ is the contact normal force, δ and _δ are respectively the
relative normal displacement and velocity in contact interface, KHC

and λHC are non-linear normal stiffness and damping coefficients.

nHC is a constant and δ0 is the static deflection due to the constant
normal force P0 (see Fig. 1).

In above the dynamics of the contact interface in normal and
tangential directions were investigated considering that the micro-slip
mechanism in tangential direction does not affect the micro-vibro-
impact mechanism in normal direction or vice-versa. In reality,
however, it is not the case because after happening one of the above-
mentioned mechanisms, the surface texture changes which results in
the change of the parameters of the other mechanism. This is the
subject which is dealt with in the remaining of this paper. In the next
section a structure subjected to a contact interface is experimentally
studied and its corresponding mathematical model is developed.

3. Experimental case study and mathematical modeling

In this section, the dynamic response of a cantilever beam being
subjected to a frictional contact interface in its free end is employed
to investigate the interaction between the contact mechanisms in
normal and tangential directions. Fig. 2 shows a uniform slender
beam which is clamped in its left boundary and is subjected to a
frictional support in the right boundary.

A constant static force applied by means of a hanging mass block
(not included in Fig. 2, see Fig. 4) is applied to the contact interface.
The static force prevents the contact point from a complete lateral
separation. Due to the weight load of this block, the contact point is
subjected to an unknown static deflection named δ0. This static
deflectionwas added in the previous section to the original version of
Hunt–Crossley model.

The structure is excited using a B&K4200 mini shaker attached
through a stinger to the structure. A B&K8200 force transducer is
placed between the stinger and the structure to measure the
excitation force. The structural response is measured using three
accelerometers installed on the beam at locations 530, 290 and 110
(measured from the beam clamped end). Two sets of experiments
are performed on the beam: (1) low level random excitation is
used to measure the linear FRFs and (2) single harmonic excitation
forces at different response amplitude levels are employed to
construct the non-linear FRFs and hence characterize the contact
interface. The experimental results are presented in Fig. 3.

The above experimental results are used in constructing a
precise mathematical model for the structure. The linear FRF is
used to obtain a reference linear model and the non-linear FRFs
are employed to construct the non-linear normal modes and to
identify the parameters of the contact mechanisms. These are
done through the remaining of this section and the next section.

Fig. 4 shows a mathematical representation of the structure
depicted in Fig. 2. In Fig. 4 the lateral deflection of the beam and
the axial displacement of the pin center are denoted by y(x,t) and u
(t), respectively. Different parameters of the beam are tabulated in
Table 1. Due to the lateral deformation of the beam and especially the
pin rotation, the contact point is exposed to both tangential and
normal displacements. One can obtain the following equations
governing the lateral deflection of the beam using the extended
Hamilton’s principle (see the Appendix A for details):

ρA€yðx; tÞþEIy″″ðx; tÞþ f ðtÞδðx�dpÞ
þ½SðtÞþðmsþmpÞð €uðtÞþr €y′ðL; tÞ�ℑðtÞÞ
�mpr €y′ðL; tÞ�y″ ðx; tÞ ¼ 0 ð3Þ

ℑðtÞ ¼ 1
2
∂2

∂t2

Z L

0
y″ðx; tÞ2 dx ð4Þ

ðmsþmpÞð €uðtÞþr €y′ðL; tÞ�ℑðtÞÞ�mpr €y′ðL; tÞþkbuðtÞþSðtÞ ¼ 0: ð5Þ
where ð _□Þ ¼ ∂□=∂t and ð□′Þ ¼ ∂□=∂x. The tangential and normal loads
at the contact interface are denoted by SðtÞ and NðtÞ, respectively.
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Fig. 1. The micro-vibro-impact mechanism due to the variable area in contact; (a): static loading and (b): dynamic loading.

Fig. 2. The experimental test rig.

Fig. 4. Mathematical representation of the structure.
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Fig. 3. Linear (a) and non-linear (b) FRFs at different response amplitude levels (g¼ 9:81 m=s2).
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Eqs. (3) and (5) are subjected to the following boundary conditions:

yð0; tÞ ¼ 0; y′ð0; tÞ ¼ 0; ð6;7Þ

EIy″′ðL; tÞ�ðmsþmpÞð€yðL; tÞþr €y′ðL; tÞÞ�NðtÞ
þy′ðL; tÞ½SðtÞþðmsþmpÞð €uðtÞþr €y′ðL; tÞ�ℑðtÞÞ�mpr €y′ðL; tÞ� ¼ 0;

ð8Þ

EIy″ðL; tÞþrðNðtÞ�SðtÞÞþ Jp €y′ðL; tÞ
þðmsþmpÞð€yðL; tÞþr €y′ðL; tÞÞ
þrmsð €uðtÞþr €y′ðL; tÞ�ℑðtÞÞ ¼ 0 ð9Þ

where the tangential and normal deflection of the contact point are
ξðtÞ and ηðtÞ, respectively, and are defined as

ξðtÞ ¼ �1
2

Z L

0
y′ðx; tÞ2 dxþry′ðL; tÞþuðtÞ ð10Þ

ηðtÞ ¼ yðL; tÞþry′ðL; tÞ ð11Þ
In Eq. (10), the first term on the right hand side is the shortening
effect of the beam due to its lateral bending motion. The second term
is the relative motion of the beam tip, and the last one indicates the
axial displacement of the pin center.

The external excitation force f ðtÞ is considered to be single
harmonic and the excitation frequency is chosen near the first
resonant point. Therefore, the non-linear response of the beam can
be spanned using its first n non-linear normal modes fωiðaÞ;φiðx; aÞg
as [34]

yðx; tÞ
uðtÞ

( )
¼ ∑

n

i ¼ 1

φiðx; aÞ
uiðaÞ

( )
qiðtÞ ð12Þ

where qiðtÞ is the ith modal coordinate. The non-linear normal
modes are equal to the normal modes of the corresponding
linearized structure at the same response amplitude level. They
are functions of the maximum response amplitude of the driving
point, i.e. a

a¼ maxðyðdp; tÞÞ ð13Þ
One of the most common approaches for reducing the order of
continuous or discrete models is the Galerkin method. The mode
shapes of the reference linear system or the non-linear normal
modes can be used as trial functions in Galerkin method. Details
about non-linear normal modes calculation and reference linear
system construction can be found in [34]. In order to implement the
Galerkin method, the expansion series in Eq. (12) is substituted into
non-linear governing Eqs. (3) and (5) and their projection on each
individual non-linear normal modes is set to zero. This leads to n
discrete ordinary differential equations asZ L

0
φifρA€yðx; tÞþEIy″″ðx; tÞþ f ðtÞδðx�dpÞ
þ½SðtÞþðmsþmpÞð €uðtÞþr €y′ðL; tÞ�ℑðtÞÞ�mpr €y′ðL; tÞ�y″ðx; tÞg

þuifmsð €uðtÞþr €y′ðL; tÞ�ℑðtÞÞþkbuðtÞþSðtÞg ¼ 0; i¼ 1;2; :::;n:

ð14Þ

Using integration by part twice in the first term of Eq. (14), the
effects of boundary conditions, specially NðtÞ, appear in the
obtained discrete model. Having measured the excitation force
f ðtÞ and choosing a set of parameters for Valanis and Hunt–Crossley
models, the obtained ordinary differential equations (i.e. Eq. (14))
can be solved in time domain and qiðtÞ can be determined. Back
substituting qiðtÞ into Eq. (12), the beam deflection yðx; tÞ is
obtained. The parameters of the contact mechanisms are identified
by comparing yðx; tÞ with the experimentally measured beam
response. The identification procedure is explained in next section.

4. Identification process and results

In this section the parameters of the Valanis and Hunt–Crossley
models are identified by using the experimental results presented in
the previous section. The identification is done by minimizing the
differences between experimental and analytical/numerical results.
The most commonly used method is to minimize the sum of square
of the differences at all sample points [35,36]. In this study, the
normalized root mean square error percentage of the predicted
driving point acceleration time history âðp; tÞ with respect to its
experimentally measured counterpart, i.e. aðp; tÞ, is used as the
objective function. The objective function can be then expressed as

OFðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ¼ 1
aðp;tiÞ� âðp;tiÞ

aðp;tiÞ
� �2r
N

� 100 ð15Þ

where p and N are, respectively, the vector of unknown parameters
and the number of samples used in identification.p consists of
the parameters of the Valanis and Hunt–Crossley models, i.e.
p¼ ½e0; et ; λ; κ; δ0; nHC ; KHC ; λHC �T . The objective function, in other
words, shows the differences between experimental and analytical
hysteresis loops of driving point excitation force vs. acceleration,
since the analytical and experimental forces are exactly the same.
In order to minimize the objective function and identify the contact
interface parameters the Genetic Algorithm toolbox of MATLAB is
used. It is worth mentioning that all parameters of P are scaled to be
between 0 and 1 while being optimized.

Identification of the contact interface parameters is performed
at different response amplitude levels. At early stages of the
identification process, it is found that the sensitivity of the beam
dynamic response to the parameters of the Valanis model is much
higher than the parameters of the Hunt–Crossley model. This
indicates that the nature of the contact mechanism in normal
direction remains unchanged in the response interval used in the
experiments. Therefore, the parameters of the Hunt–Crossley
model are kept constant and are identified at the response
amplitude level of 6g. At this level the contact interface experi-
ences the most non-linear effects. The identified parameters for
the Hunct–Crossley model are presented in Table 2.

Arz and Laville [37] experimentally showed that the parameters
of the contact mechanism in normal direction are constant. They
identified a unique set of parameters for different impact velocities.
It should be noted that despite the fact that the parameters of the
contact mechanism in normal direction are constant, the equivalent
normal stiffness and damping coefficients of the contact interface are
variable at different response levels since they are dependent upon
the displacement in normal direction.

Having known the parameters of the Hunt–Crossley model
from a response amplitude level of 6g, the parameters of the
Valanis model are identified at different response amplitude levels
(Table 3). Fig. 5 shows the convergence rate of the objective

Table 1
The parameters of the beam structure.

Parameter Value

L 600 mm
b 40 mm
h 5 mm
EI 86.25 kg m4

ρ 7850 kg m�3

ms 10 kg
r 6 mm
mp 35 g
Jp 630 g mm2

dp 530 mm

M. Bazrafshan et al. / International Journal of Non-Linear Mechanics 58 (2014) 111–119 115
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function in identification process. Fig. 5 indicates that after 20
generations the minimization algorithm converges to an accepta-
ble solution since the error is less than 8%.

It should be noted that by increasing the excitation level, the
tangential displacement in contact interface is increased. This
results in a decrease to the size of the stick regions and hence
the contact tangential stiffness in stick regime decreases. This
behavior is obviously observed in Table 3. As response amplitude
level increases from 1g to 6g the contact tangential stiffness in
stick, i.e. e0, decreases gradually while the contact tangential
stiffness in macro-slip, i.e. et , remains unchanged. Ahmadian
et al. [34] showed that for the same contact interface, et � 0. This
is used in the next section to develop a relation which considers
the variation of the contact tangential stiffness in stick vs. the
response amplitude level.

Using the identified parameters in Tables 2 and 3, Fig. 6 shows
the hysteresis loops of excitation force vs. driving point accelera-
tion at different levels of response amplitude. The results pre-
sented in Fig. 6 indicate that the differences between model
predictions and experimental observations are negligible which
shows the accuracy of the proposed method. Fig. 7 shows the slip
force hysteresis loops at the contact point obtained from the
analytical model with identified parameters. One should notice
that as the response amplitude level increases, the initial slope of
the hysteresis loops – representing the contact tangential stiffness
in stick – decreases. It is also obvious that the final slope of
hysteresis loops is negligible compared to their initial slopes.

The hysteresis loops of the normal force at the contact point are
also depicted in Fig. 8. This figure indicates that by increasing the

excitation level the minimum value of the normal force approaches
toward zero which shows that as the excitation level is increased the
tendency of the contact interface in normal direction for separation is
also increased. The next section deals with the variation of contact
point tangential stiffness in stick regime, i.e. e0, and a new relation
will be proposed to relate this variation to the amplitude of contact
point tangential displacement.

5. Contact tangential stiffness formulation

It was stated in the previous section that as a result of Hertzian
normal contact stiffness, the average normal contact deflection
during vibration is smaller than the static one under the same
average load. Therefore the vibration in normal direction of the
contact interface leads to the reduction of the average area in contact
(see Fig. 1) and consequently the friction force. The main purpose of
this section is to formulate the variation of contact point tangential
stiffness in stick regime by using the Richard–Abbott model [28]. This
model is based on the elastic–plastic behavior of materials. According
to this model, the stress–strain ðs�εÞ relation for elasto-plastic
materials is expressed as

s¼ ðEe�EpÞ 1þ ðEe�EpÞε
Sy

����
����
n� ��ð1=nÞ

þEp

 !
ε ð16Þ

where s is the stress, ε is the strain, n is a constant number to control
the transition from elastic to plastic state, Sy is the material yield
stress, Ee and Ep are, respectively, elasticity and plasticity moduli.
Fig. 9(a) shows the physical interpretation of these parameters. The
initial and final slopes of stress–strain curve are elastic and plastic
moduli of the material. Let us assume that Ep=Ee � 0 which shows
the negligible amount of plastic modulus in comparison to the elastic
modulus. Hence, one can easily obtain from Eq. (16) that

s¼ Ee 1þ Eeε
Sy

����
����
n� ��ð1=nÞ

; ε¼ Ee 1þ S
Sy

����
����
n� ��ð1=nÞ

; ε� e0ðXÞε

ð17Þ
where

e0ðXÞ ¼ Ee 1þ X
Xy

����
����
n� ��ð1=nÞ

ð18Þ

Eq. (18) represents the general modulus of elasticity as a function of a
physical parameter X. Xy is the specific amount of the physical
parameter corresponding to the material yielding point. Eq. (18)
includes three parameters Ee; Xy and n in which Ee is the initial value

Table 2
Hunt–Crossley model identified parameters.

δ0 � 108 ðmÞ nHC KHC � 10�14 ðNm�nHC Þ λHC � 10�3 ðN s m�ðnHC þ1ÞÞ

14.21 1.86 5.41 7.23

Table 3
Valanis model parameters with κ¼ 0:5 (g¼ 9:81 m=s2).

Response amplitude et � 10�3 ðN m�1Þ e0 � 10�6 ðN m�1Þ λ� 10�5 ðm�1Þ

1g 8.4 6.37 1.62
2g 8.8 4.79 1.63
3g 8.3 3.97 1.66
4g 8.2 3.13 1.67
5g 8.2 2.71 1.70
6g 8.6 2.46 1.66

Fig. 5. Convergence rate of the objective function at different response amplitudes
levels (g¼ 9:81 m=s2).

Fig. 6. Hysteresis loop of excitation force vs. driving point acceleration, model
results (solid lines) and experiment results (dots) (g¼ 9:81 m=s2).
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of the modulus of elasticity. Fig. 9(b) shows some typical curves of Eq.
(18) for different values of n. An increase in X from zero to 2Xy leads
to a decrease in e0. The reduction rate of e0ðXÞ depends on n.

As an analogy between stress–strain behavior of elasto-plastic
materials and frictional contact interface behavior containing
micro-slip to macro-slip regime, Eq. (16) can be used to predict
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the variation of contact point tangential stiffness. It should be
noted that Ee; Ep; n and Sy of Richard–Abbott model are compar-
able with e0; et ; κ and α0 of Valanis model. By using Ep=Ee � 0
according to the results presented in Table 3, Eq. (18) can be used
to formulate the variation of contact point tangential stiffness. It is
reasonable to consider X in Eq. (18) as the contact point tangential
displacement amplitude. By curve fitting Eq. (18) in the results
presented in Table 3 the unknown parameters are obtained as
shown in Table 4. Fig. 10 depicts how contact tangential stiffness
varies with tangential displacement amplitude. Good agreement
between the identified values in the previous section (dots) and
the predicted results by Eq. (18) (solid line) is observed in Fig. 10.

6. Conclusion

In this paper, the interaction between contact mechanisms in
normal and tangential directions of a frictional contact interface was
investigated. An experimental case study consisting of a clamped
beam subjected to a frictional contact support at its free end was
considered. The structural response of the beam to single frequency
harmonic excitations and at different response amplitude levels was
used to characterize the behavior of the contact interface in normal
and tangential directions. Two models, i.e. Hunt–Crossley and Valanis
models, were employed to represent the behavior of the contact
interface. It was found that the parameters of the Hunt–Crossley
model remain constant at different amplitude levels but the para-
meters of the Valanis model – especially the stiffness in stick regime
– is response amplitude dependent. Finally, the variation of the
stiffness in stick regime of the Valanis model was formulated.

Appendix A

The extended Hamilton’s principle is employed to derive the
governing equations of the system as shown in Fig. 4Z t2

t1
ð�δTþδV�δWncÞ dt ¼ 0 ðA:1Þ

The kinetic energy is defined as

T ¼ 1
2

Z L

0
ρA_yðx; tÞ2 dxþðmsþmpÞð_yLþr _y′ðL; tÞÞ2þ Jpð_y′ðL; tÞÞ2

�	

þ1
2
ms _uþr _y′ðL; tÞ�1

2
∂
∂t

Z L

0
y′ðx; tÞ2 dx

� �2

þ1
2
mp _u�1

2
∂
∂t

Z L

0
y′ðx; tÞ2 dx

� �2

:

ðA:2Þ
The potential energy is as follows:

V ¼ 1
2

Z L

0
EIðy″ðx; tÞÞ2 dxþ1

2
kbu

2: ðA:3Þ

Based on the fact that SðtÞ and NðtÞ are generally non-conservative
forces, the virtual work of non-conservative forces is expressed as

�δWnc: ¼ SðtÞ �
Z L

0
y′ðx; tÞδy′ðx; tÞ dxþδu�rδy′ðL; tÞ

	 �

þNðtÞðδyðL; tÞþrδy′ðL; tÞÞþ
Z L

0
f ðtÞδðx�dpÞδyðL; tÞ dx:

ðA:4Þ
Substituting (Eqs. (A.2)–(A.4)) into Eq. (A.1) and after some algeb-
raic manipulations and integration by part, one can obtainZ t2

t1

Z L

0
ðρA€yðx; tÞþEIy″″ðx; tÞþ f ðtÞδðx�dpÞ



þ½SðtÞþðmsþmpÞð €uþr €y′ðL; tÞ�ℑðtÞÞ�mpr €y′ðL; tÞ�y″ðL; tÞÞδyðx; tÞ
þððmsþmpÞð €uþr €y′ðL; tÞ�ℑðtÞÞ�mpr €y′ðL; tÞþkbuþSðtÞÞδuðtÞ
�ðEIy″′ðL; tÞ�ðmsþmpÞð€yðL; tÞþr €y′ðL; tÞÞ�NðtÞ
þy′ðL; tÞ½SðtÞþðmsþmpÞð €uþr €y′ðL; tÞ�ℑðtÞÞ�mpr €y′ðL; tÞ�ÞδyðL; tÞ
þðEIy″ðL; tÞþrðNðtÞ�SðtÞÞþ Jp €y′ðL; tÞþðmsþmpÞð€yðL; tÞþr €y′ðL; tÞÞ

þrmsð €uþr €y′ðL; tÞ�ℑðtÞÞÞδy′ðL; tÞ
�
dt ¼ 0 ðA:5Þ

Separating the terms related to variations of independent coordi-
nates, Eqs. (3)–(5) are obtained.
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