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Dynamic Response of MDOF Systems:
Mode-Superposition Method

» Mode-Superposition Method: Principal Coordinates

» Mode-Superposition Solutions for MDOF Systems with
Modal Damping: Frequency-Response Analysis

» Mode-Displacement Solution for the Response of
MDOF Systems

» Mode-Acceleration Solution for the Response of
Undamped MDOF Systems

» Dynamic Stresses by Mode Superposition

» Mode Superposition for Undamped Systems with
Rigid-Body Modes
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MODE-DISPLACEMENT SOLUTION FOR
THE RESPONSE OF MDOF SYSTEMS

u() = en(r) = qu,,m(r)

n, (1) = [ f(r)e §roy (1—T) sinwy, (t — t)drt

rdr

nr (O) + grwn nr (O) *

+ e~ brert l:n,(O) COS wy, t +
' _ , . B wdr

sin wdt:'

> In many cases only a subset of the modes is available

» We examine modal truncation and determine the
factors to be considered in deciding how many modes

to include.
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Mode-displacement solution

. —
W) =70) =Y é,7.()

S=[p, ¢, -~ ¢3] N<n
» The mode-displacement solution ignores

comp
Incluo

etely the contribution of modes not
ed in the set

> The"

<ept* modes are not restricted to the

lowest-frequency modes if some modes of
higher frequency are available and are
considered to be important.
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Example _
pm1 1psecZin,  excitation frequencies 2 = 0, 2 = 0.5w,,
@ —* Y and Q = 1.3w;

k, = 800 kips/in. my =2 N
kp = 1600 my =2 - s 1 -1 0 0] 100 0]
3
k3 = 2400 m,y =3 _ -1 3-2 0 10200
k, = 3200 g > =3 M=1oo020
) 777/777777777777777777 ' | 0 O ——3; T ] 000 3 ]
[ 0.17672 ) Sea— éP
0.87970 | 9
2 — | 10°, E—
“7 ] 168746 [ ‘
| 3.12279 | | 6’7
[ 13.294 ) ' g |
29.660 i
Y | adssec  WWhat conclusions can you draw
41.079 concerning truncation to one mode,
| 55.882 | - to two modes, or to three modes?
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Example. Modal masses and stiffnesses

- 1.00000 1.00000 —0.90145 0.15436 "
0.77910 —0.09963  1.00000 —0.44817
0.49655 —0.53989 —0.15859  1.00000
| 0.23506 —0.43761 —0.70797 —0.63688 _

M, = 2.87290 kip-sec?/in., K, = 507.691 kips/in.
M, = 2.17732 kip-sec?/in., K, = 1915.39 kips/in.
M; = 4.36660 kip-sec’/in., K5 = 7368.45 kips/in. -
M, = 3.64239 kip-sec’/in., K, = 11,374.4 Xips/in.
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Example. The modal forces

P
| 0
p(t) = Pcosr = 0 cos §2
’ Fi =P
- F, = P |
F" == ¢’rP Fi = ——0.90145}’1

F4 — 0.15436P1



Example. The mode-displacement
F. 1
Kr 1 — (Q/CU,.)Z

N
nr(t) = COS Qt EI(I) — Z:(plrnr(r)
r=1\

u(t) =

1.0(P, cos S2t) -~ = .
507.691[1 — ($22/176.72)] ]N =1

1.0(P; cos Q2t)
1915.39(1 — (£22/879.70)]

—0.90145(—0.90145 P, cos Q)
7368.45[1 — (£22/1687.46)]

, 0.15436(0.15436 P, cos Q1)
11,374.4[1 — (2/3122.79)]

N=2

+

<)
I
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Example. The mode-displacement

Constant C in u,(t) = CP, cos

Q=0 1.970(1073) 2.492(1073) 2.602(107%) 2.604(107%)
Q=05w, 2.626(1073) 3.176(1077) 3.289(1073) 3.291(107?)
Q=13w, -1301(107%)  -3.630(10~%)  —5.228(107%)  —4.987(107%)

1. A one-mode solution is not accurate at any of the three frequencies.

2. A three-mode solution is quite accurate for Q = 0 and for = 0.5w,, but since
2 = 1.3w, is almost equal to w,, an important contribution to u,(t) at this
frequency is the mode 4 contribution. A truncated solution is useless at this
frequency.
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Mode-acceleration solution
u= K_I[p(t) — Cu — Mu]

u=K'[pt) - Coéy — Mdi)

4
w,

. Y2, "
6() =K'p() = ) =4,1,(1) = ) — .. (1)
r=1 r=1 r

ﬁ-::N
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Example
»Determine an expression for u, using Mode
Acceleration Method,

» Compare the results with the results of mode-
displacement method.

mo1kpsecin.  excitation frequencies = 0, 2 = 00.5w,,
B, cos 9 — 4 and Q = 13w

k, = 800 kips/in. My =2 -y,
k, = 1600 my =2 -
ks = 2400 my=3 .
Kq = 3200 - 2.60417 1.35417 0.72917 0.31250 7
TITIIIIII1 722720 70T 1.35417 135417 0.72917 031250 f .
A=K'= (10%) in./kip
0.72917 0.72917 0.72917 0.31250
| 031250 0.31250 0.31250 0.31250 _

@-
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Example.: The mode-acceleration solution

i(r) = K- p(t)-z 22977

p(t) =PcosQt F.(t) = q‘)TP

F, 1
n,(t) = - 1 — (Q/w—)z cos §2t

ﬁ :"—'auP] cos Qt — Zw2¢1rnr

ru—-

1
K 1 - (Q/w,)?

PICOSQt+Z OSQt
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Example. The mode-acceleration solution

u () = 2.60417(107%)(Pycos Q) ] 7 ]
(Q/176.72)(1.0)(P; cos 1)
- 507.695[1 — (22/176.72)] |
(22/879.70)(1.0) (P, cos 1)
1915.39[1 — (22/879.70)] |, |
(2?/1687. 46)( 0.90145)(~0.90145 P, cos Q1)
7368.43[1 — (22/1687.46))

(27/3122.79)(0.15436)(0.15436 P, cos Q1)
11,374.4[1 — (92/3122.79)}

)
1

)
I
)

)
|
w
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Example. The mode-acceleration solution

Constant C in u,(t) = CP, cos Qt

N=1 = N-= 2 N =3 N=4
Q=0 2.604(10~%) 2. 604(10 ‘) 2.604(1073) 2.604(10~%)
Q=05w,  3.261(1073) 3.288(107%) 3.291(107%)  © 3.291(107%)
Q= 13w, 5.044(107?) —2.506(1073) —5.207(107%) —4.987(107%)

(¢c) From the foregoing table we can conclude that:

1. The exact static solution is produced at Q = O without any contribution from
normal modes. o

2. At the low frequency of Q = 0.5 w,, even a one-term solution is fairly accurate,
- and the mode- acceleration solution is -accurate to two places for N =2, as
compared with N = 3 for the mode-displacement solution.

3. Since the forcing frequency © = 1.3 w; lies between w; and ws, a truncated
mode-acceleration solution is not any better than a truncated mode-displacement
solution—the fourth mode is needed in either case.

@-
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DYNAMIC STRESSES BY MODE
SUPERPOSITION

For the mode-displacement method, the internal stresses
are given by:

7@ =) sn.(0)

For the mode-acceleration method for an undamped
system, the displacement approximation leads to the

stress approximation:

N
-. | S
&(I) = O pseudostatic z _"'srnr(!)
r=1 wz

r

School of Mechanical Engineering
Iran University of Science and Technology



Example

»For the shear building, write an expression for
the shear force at the it story corresponding to

)

¢
b
3
a

482.02 |
-2317.07
3928.51

mode r.
(o} | Tk —ky 0 07 { u (5, ) "k, ‘-ki o o1¢(
ol |0 k-t 0]mu | 5, 0 k —k O
4 03 - 0 0 ki\ —k;y Us ‘ 53 = 0 0 ks ¥k3 *
| a4 0 0 0 k| M4 ss | 0 O_- 0 k||
[176.72 | ' 879.70} » i
452.08 | 204.42
PR AT 2 S T 68 [T _aesar |
k, = 800 kips/in. my =2 -y | 752.19 | | —1400.35 \
ky = 1600 My=2 - —1521.16
= 2400 i u NN < I
23200 — ‘ 1318.51
777777777777777777777 | —2265.50 |

Q

03
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Dynamic Response of MDOF Systems:
Mode-Superposition Method
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DYNAMIC STRESSES BY MODE
SUPERPOSITION

For the mode-displacement method, the internal stresses
are given by:

7@ =) sn.(0)

For the mode-acceleration method for an undamped
system, the displacement approximation leads to the

stress approximation:

N
-. | S
&(I) = O pseudostatic z _"'srnr(!)
r=1 wz

r
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Example

»For the shear building, write an expression for
the shear force at the it story corresponding to

)

¢
b
3
a

482.02 |
-2317.07
3928.51

mode r.
(o} | Tk —ky 0 07 { u (5, ) "k, ‘-ki o o1¢(
ol |0 k-t 0]mu | 5, 0 k —k O
4 03 - 0 0 ki\ —k;y Us ‘ 53 = 0 0 ks ¥k3 *
| a4 0 0 0 k| M4 ss | 0 O_- 0 k||
[176.72 | ' 879.70} » i
452.08 | 204.42
PR AT 2 S T 68 [T _aesar |
k, = 800 kips/in. my =2 -y | 752.19 | | —1400.35 \
ky = 1600 My=2 - —1521.16
= 2400 i u NN < I
23200 — ‘ 1318.51
777777777777777777777 | —2265.50 |

Q
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MODE SUPERPOSITION FOR UNDAMPED
SYSTEMS WITH RIGID-BODY MODES

u(t) = ug(t) +ug(t) = Prng(t) + Pen(t)
Mgne = ‘bip(t)

4 T l
1,(1) =f / -M—ﬂ(é’) d§ dtr + 1 n,(0) + n,(0), r=12,..., Ng
0 JO r

MEiig + Keng = ‘PEP(I)

1
1 n.@) =n,0) cosw,t + —;ﬁr(o) sin w, !

+ —L—f ¢, p(7) sinw, (t — t)dt
Mo Jo |

School of Mechanical Engineering
Iran University of Science and Technology



Mode-Displacement Method for Systems
with Rigid-Body Modes

» All rigid-body modes are employed,
»Included are number of elastic modes.

() = Rang (1) + Se7; (1) I

» Rigid-body displacements do not give rise to
Internal stresses:

School of Mechanical Engineering
Iran University of Science and Technology



Mode-Acceleration Method for Systems
with Rigid-Body Modes

» The stiffness matrix is singular and cannot be inverted,

» The mode-acceleration method cannot be employed In
the straightforward manner

u(?) = Prn,(t) + (P

» Truncating the number of elastic modes

K. ®)p(t) — (®:K;'My)ii,

u(t) = Dgyg(t)

Agp(t) — (‘I)E

545)”5

School of Mechanical Engineering
Iran University of Science and Technology

Must include all flexible modes.



Mode-Acceleration Method for Systems
with Rigid-Body Modes

Miu + Ku = p(¢)
u(r) = ug(t) +ug(s)

Mu; + Ku; = pe(f)
pe(t) = p(r) — Mug

In determining the elastic displacements, we use a self-
equilibrated force system of applied forces and rigid-body
Inertia forces.
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Mode-Acceleration Method for Systems
with Rigid-Body Modes

pe(1) = p(t) —Mug
iiR' — q)RﬁR = ‘I’RME-]"I’EP(T).

pe(t) = RP(O

R=1-M&,M; !

A

/

The /nertia-Relief Matrix




Mode-Acceleration Method for Systems
with Rigid-Body Modes

»In order to calculate a flexibility matrix we need
to Impose AN arbitrary constraints.

»Then let A, be the flexibility matrix of the
system relative to these statically determinate
constraints,

» with zeros filling in the A, rows and columns
corresponding to the constraints.

W = AxP¢

School of Mechanical Engineering
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Mode-Acceleration Method for Systems
with Rigid-Body Modes

WE =w—¢RCR

&TMw; = 0. - cg = My & Mw
we=(I— &M '®M)w =R'w
We = AP
AE — RTARR

A—l -~

W(r) = Dxn4(t) + RTARp(r) — (DK, M)7,.(1)




Stresses In Truncated Models of Systems
with Rigid-Body Modes

Ng |
&(t) — apscudostatic '_ Z "'_Z'Sr nr (t)
r=1 w’

School of Mechanical Engineering
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Stresses In Truncated Models of Systems
with Rigid-Body Modes

Example 11.8 Use the mode-displacement method and
the mode-acceleration method to determine expressions
for the maximum force in each of the two springs shown
In Fig.1 due to application of a step force P3(t)= Po. t >0.
Compare the convergence of the two methods. The
system is at rest at 7= 0.

b pa(h

Po

Yy~

4 4

ky = k=1 ps(t)
'.m1=‘l --\F\f\\-- m2=1 —\!\f\:\,— My=1 freepp-

School of Mechanical Engineering
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Example 11.8 Modes and Natural

Frequencies
100 [ ] [ 1-1 O]fw 0
001 || i 0-1 1]} u | O
U= ¢ coswt
-1 2—-w* -1 |[$¢7=40
_ 0 -—'1 1——&)2 ¢’3 0

School of Mechanical Engineering
Iran University of Science and Technology
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Example 11.8 Modes and Natural
Frequencies

w* =0, wr =1, w: =3
l 1 1
¢'; = { , ¢’z - N ¢’3 — -2
-1 l
M, =¢"M¢p, =¢l¢,, K, =wM,

M|=3, M7_=2, M3=6
K,=0, K,=2,  K,=18



Example 11.8 Initial conditions and
generalized forces

n.(0) = n,(0) =0, r=1,2,3
() =@ p@)
fi{t) = p3(t) = po,

f2(t) = —pi(t) = —po.
f1(t) = ps(t) = po



Example 11.8 Solutions in modal
coordinates

Pof2
n = ”

A

o

[ o

+

N W

o I

N —

|
je
e

—Do { p, = "2‘"’(1 — cos wyt)

Do
Ny = %U — COS w;t)

N
—_—
bad
+
P
o0
-—
Lad
1

School of Mechanical Engineering
Iran University of Science and Technology



Example 11.8 The moaal stress vectors



Example 11.8 The mode-displacement
approximation to the spring forces (internal
stresses)

E(DnEHmude) = SZ Uz(f )

E(on&—mﬁde) — [ 4 } — { :i }"-__po(l — COS w,!1)

0, 2
_m[1
=3 {1](1-coscuzt)

School of Mechanical Engineering
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Example 11.8 The mode-displacement
approximation to the spring forces (internal
stresses)

E(twn—mndﬂ =0o(t) = Szﬂz(f ) + S313(1)

G(two——mode) =0 = I } { ] (]- — COS (t)gt)
-1
1

+ [ ] (1 — cos Cf)gt)

P

Scho IfM chan IEg ing
I[ran Uni yofSc dT chnology



Example 11.8 The mode-acceleration

solution for internal stresses
Po/3 po/3 po/3

e ._...'\:\!\f\,—- -‘—-—--}r'\r\t\f\p{_ﬁj—‘pﬁ

Self-equilibrating force system due to rigid-body motion.

Do

o =17 3
pseudostatic =— =

gz |, . 2po

pseudostatic —

3
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Example 11.8 The mode-acceleration
solution for internal stresses

| S
&(t) = apscudostntic - '_Zs?.'h(t)
- -5 Po | 1 Po ]l
O (one—mode) — l &; } = -—3— { 2 } — --2—{ 1 ]COSOJgt
| S .
6(‘) =0 = apscudnstaljc - w_gslnl(t) - Esms(f)

. ol _p |1
o'(tu.fo—-mode) =0 = 0, - ? 2

Po ] Po 1 COS Wy !
2|1}C08w23+6[_1] 3
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Example 11.8 Comparison

Mode-displacement Mode-acceleration

one-mode one-mode Exact?
a1/ Po 1.000000 0.833333 0.999933

9“Exact” values computed by evaluating o, and o, from Eq. 185 at 1° intervals to wt = 100n.

» The two mode solution are identical, since this

system has only two elastic modes.

» The example is too small to indicate improved

"convergence" of the mode acceleration

method over the mode-displacement method.

@-
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Extra Example
—++ S —4* e

Ky =1 Ky =1 ky=1 k=1 [ k=1 p.(1)
m=1 FAWAMA me=1 FWWH ms=1 L —| my=1 A MH ms=1 FWAAH m =1 —>
1 1 0 0 0 0 e 1 1 46 43 1
1 2 -1 0 0 o0 6 342-46 2 6 6 32446
P I R J6 1-43 ; 6 _ﬁ 14403
o oo 12 1o 0 0 000 0 ] 6 342-46 6 3 34024406
00 0 -1 2 -1 0 2-43 00 0 0 N I S O PR CN S 1
0o 0 0o 0o -1 1] _[j 0 1 0 0 0 o & 3[ Vf_ E & & 3( J_
1 0 0 0 0 0] oo 020 o B T e U A CR T
001 0 0 0 0 00 003 0 5 3z-4s 2 6 6 3fardfs
5 00 1 0 0 o0 0 0 0 0 0 2443 J6  —1+43 . J6 43 —1-43
o0 0 1 0 o 6 3w'/_ 6 I 3f+x/_
000 0 0 1 0 6 146 3
[0 0 0 0o 0 1l | 6 Bﬁ—ﬁ 2 6 6 H'Eﬂ/g_
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Extra Example

[> Ar:=copyinto(inverse(submatrix(K,2..6,2..6)) Matrix(6,6),2,2);

[0 0 0 0 0 0
o 1 1 1 1 1
o 1 2z 2 2 2
Ar =
o 1 2 3 3 3
0 1 2 3 4 4
o 1 2 3 4 5]

(> R:=map(simplify matadd(Matrix(6,6,shape=identit
transpose(submatrix(Phi,1..6,1..1))))) -,

S

,~ltiply(multiply (M, submatrix(Phi,1..6,1

El S
& & & & & )
1 El L S
£ £ £ £ £ )
1 El S S
& & & & & &
A=
S S Bl A
& & & & & &
T S 3 1
# # # # # )
T S et 3
L & & & # & 6
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Extra Example

"
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Ae -

35
26

23
26

1

36
-17

36
-2

26
-35

26

(> Be:=multiply(transpose(R) multiply(Ar , R));

25 1
46 46
17
£l £l
7B
46 46
-11 1

46 46
-23 -11
£l £l
-29 -17
46 46

-29 -35
46 46
-2 -29
£l £l
-11 -17
46 46
7 1

46 46
a1 25
£l £l
25 5
46 46




Dynamic Response of MDOF Systems:
Mode-Superposition Method

> ModO
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Mathematical Models of Continuous
Systems

» Applications of Newton's Laws: Axial Deformation and
Torsion

» Application of Newton's Laws: Transverse Vibration of
Linearly Elastic Beams (Bernoulli-Euler Beam Theory)

> Ap
wit
> Ap

plication of Hamilton's Principle: Torsion of a Rod
n Circular Cross Section

plication of the Extended Hamilton's Principle:

Beam Flexure Including Shear Deformation and
Rotatory Inertia (Timoshenko Beam Theory)

School of Mechanical Engineering
Iran University of Science and Technology



APPLICATIONS OF NEWTON'S LAWS:
AXIAL DEFORMATION AND TORSION

The axial deformation assumptions,
» The axis of the member remains straight.

» Cross sections remain plane and remain perpendicular to the axis of
the member.

» The material is linearly elastic. '

» The material properties (£, p)are constant at a given cross section,
but may vary with x.

/ {_J(_X.,.f) . p(xt) |
e

r. ,**( X
— - o

School of Mechanical Engineering
Iran University of Science and Technology



Constitutive Equation

o = Fe¢

€(x. 1) = au(xt)

P(x, t)--ffadA Aa
.3 P

U

e

ox  AE




Applications of Newton's Laws:

.i;ZFx = Ama,

Py(x, 1) Ax

a?.. S
peAx + P(x + Ax,t) — P(x, ! 3: PO |/ Plx+ax.t
. P(x+ Ax,t)— P(x,1) Pu o .
z}};IBO . ( Ax — + p:(x,1) = pA — 972 AW A(x+ AX)

P 3%u
—_ — pA —
5y P PAEa
2
0 Ju a“u
— (AE — ) + p.(x, 1) = pA —, O<x<L
0x 9 X * 312

School of Mechanical Engineering
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Common Boundary Conditions:

julx.,t) =0,  fixed end

du

—! =0, force-free end

dx %

AE _q_i‘_) —m a_Ii @ Tip'mass 3
3 X Y= d l‘2 x=0 o

-

. — k'u (O& t) a\/\ /\ Elastic Support

School of Mechanical Engineering
Iran University of Science and Technology



Torsional Deformation of Rods with
Circular Cross Section

» The axis of the member, which is labeled the x axis, remains
straight.

» Cross sections remain plane and remain perpendicular to the axis of
the member.

» Radial lines in each cross section remain straight and radial as the
Cross section rotates through angle e about the axis.

» The material is linearly elastic t = Gy,
» The shear modulus is constant at a given cross section but may

vary with x. L
10,1
\ F N H(x, f)

(LT
— b 1

School of Mechanical Engineering
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Newton's Law for moments

S 320
Y M = (oI, Ax) o

. . g
to(x,t) Ax + T(x + Ax,t) = T(x,1t) = (pl, Ax) 7
. T(x + Ax,t) - T(x,1t) 329
I ~ ' l 1) = ]I —
Axr——r:{) _ Ax +4(x, 1) =p P 552

oT - 3%6 0 _ T |

dx

a TRl g ox L]
T(x, t) [
K ( 80 820 | N T(x+Ax, 1

GIP-—)-i—tg(x,t)szp-———i-, O<x< L
‘3x at | ) X"’I |+—Ax
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Common Boundary Conditions:

6(x.,1) =0,  fixed end

= T,(1), torque-loaded end

()

E

An example: |
Rod-disk system ( ai)

School of Mechanical Engineering
Iran University of Science and Technology



TRANSVERSE VIBRATION OF LINEARLY
ELASTIC EULER-BERNOULLI BEAMS

The Euler-Bernoulli assumptions of elementary beam theory are:

» The x-yplane is a principal plane of the beam, and it remains plane as the beam
deforms in the y direction.

» There is an axis of the beam, which undergoes no extension or contraction. This is
called the neutral axis, and it is labeled the x axis. The original xz plane is called the
neutral surface.’

» Cross sections, which are perpendicular to the neutral axis in the undeformed beam,
remain plane and remain perpendicular to the deformed neutral axis; that is,
transverse shear deformation is neglected.

» The material is linearly elastic, with modulus of elasticity E(x), that is, the beam is
homogeneous at any cross section. (Generally, £is constant throughout the beam.)

» Normal stresses along y and z are negligible compared to that of x

[ §
y ' *v(x, 1)

SN s
I {

X

.

AXx
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TRANSVERSE VIBRATION OF LINEARLY
ELASTIC EULER-BERNOULLI BEAMS

The following dynamics assumptions will also be
made:

» The rotatory inertia of the beam may be
neglected in the moment equation.

» The mass density Is constant at each cross
section, so that the mass center coincides with
the centroid of the cross section.

School of Mechanical Engineering
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TRANSVERSE VIBRATION OF LINEARLY
ELASTIC EULER-BERNOULLI BEAMS

32 Ay Py, 1) S(x+Ax, 1)
— \ £ ’
Mz, 1) = EI ax2 ~ 1/
M of 4 LY | X
\ I + /M(x+Ax. 4]

T+ZFy=Amay | S(x;)/_
S(x, t)-S(x+Ax t)+py(x t) Ax = pA Ax —

s . 3%
_"'""'+py(x f) _pA atz

QZM(;:}/ »s:%—

32 9%\ 9%y e
(EI —-—-) + pA = p,(x, 1), 0 é'“xf'"-a:_ L

32
812

| 8x2 dx? at?
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Common Boundary Conditions:

Fixec

end at x= x_.

'U(xeg t) - Wy an ax - -
Simply supported end at x = x, .
1) = 0 q 3%V
vix,, ) = an — =
) x|, _,

SR
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Common Boundary Conditions:

Free end
0 3%y | | 9%v |
— | El — =0 and — =0
ox ( 8x2) X=X, 81‘2 X=X,
The tip mass at x=L.
P 3%y 3%v
5; (EI 5;5) x=L - or? x=L f 1 m
2 L
LY I 5 ~
axz x:L -
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8;2

A Beam Subjected to Compressive End
Load " el
1+ZFy = ma,

aS 3%v
— +py(x 1) = pA ™)

QZMG——O

M+ Ax,t) — M(x, t)+N[v(x+Ax t) —vix, )] - S(x+ Ax,1) Ax =0
p

oM +-N§_v — S Sk t) o~ Mx+axn )
ax ox | . \ | |
. |

) [ t = ¥ -

82y N32v+A32u o —
— — = p,(x,
(EI dx? + dx? o gt P

Av
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Mathematical Models of Continuous
Systems

» Applications of Newton's Laws: Axial Deformation and
Torsion

» Application of Newton's Laws: Transverse Vibration of
Linearly Elastic Beams (Bernoulli-Euler Beam Theory)

> Ap
wit
> Ap

plication of Hamilton's Principle: Torsion of a Rod
n Circular Cross Section

plication of the Extended Hamilton's Principle:

Beam Flexure Including Shear Deformation and
Rotatory Inertia (Timoshenko Beam Theory)
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Structural Dynamics

Lecture 14: Mathematical Models of Contlnuous Systems (Chapter 12)
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Mathematical Models of Continuous
Systems

» Applications of Newton's Laws: Axial Deformation and
Torsion

» Application of Newton's Laws: Transverse Vibration of
Linearly Elastic Beams (Bernoulli-Euler Beam Theory)

> Ap
wit
> Ap

nlication of Hamilton's Principle: Torsion of a Rod
n Circular Cross Section

plication of the Extended Hamilton's Principle:

Beam Flexure Including Shear Deformation and
Rotatory Inertia (Timoshenko Beam Theory)
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APPLICATION 'OF HAMILTON'S PRINCIPLE:
TORSION OF A CIRCULAR ROD

L
V= ! fo GJ ()¢’ (x, )" dx

T= Tod + Toutey = %[ pl, ()0 (x, ) dx + LI[8(L, 1))?
0

L
W, = f 1(x. 1) 80(x. 1) dx + T, 86(L,
0

o Bn T

@;( ( C\\i?ﬁ { 4]@

g bl ‘ L—>|
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APPLICATION 'OF HAMILTON'S PRINCIPLE:
TORSION OF A CIRCULAR ROD

SO —

' r—-ﬁ———_ e — e —

2
/ 3(T-V)dr+f
| 1 {1

l—

{

2 £ ' l y (g 2 1
f 8 [%f pI,,(Q)z dx + 510[9(1,, )" — 5
gl 0

]
W,.dt =0

f L GJ (9')* dx] dt
0

+ ftz UL to(x, 1) 86(x, t)dx + T, 86(L, r)] dt =0
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APPLICATION 'OF HAMILTON'S PRINCIPLE:
TORSION OF A CIRCULAR ROD

L
o0V = [ GJO' 66 dx
0

() {2 L
f sVdt = [ ([ GJ@’&Q’dx) dt
1 t 0

) L
= f [(GJB') 39|§ - f (GJ @'Y 66 dx] dt
£ 0
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APPLICATION 'OF HAMILTON'S PRINCIPLE:
TORSION OF A CIRCULAR ROD

L I . .
6T = f plpé 86 dx + I,6(L,1)80(L,1)
0

fz L f2 . . f2 . .
f 57dt = [ (f pl,6 40 dt) dx +[ I,0(L,t)é6(L,t)dt
| _ 0 4 . 5] ] |

L . 32 o
- f (01,6 80)]? ~ [q (pLi80)dr | dx

+ [I,0(L, 1) 86(L, r)]ﬁ"i _ I8, 1) 88(L, 1)
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APPLICATION 'OF HAMILTON'S PRINCIPLE:
TORSION OF A CIRCULAR ROD

2 L " _
f f [(GIJO) — pl,0 + t5(x, t)]66 dx dt
H 0

_ Iy
+ f (G 80)sm0 — [(GIO — T,) 86),my — IoB(L, 1) 86(L, 1)} dt = 0
v 11 ' o :

—(GJO'Y 4+ pl,0 =15(x,1), O<x<lL

(GJ8)uet + IoB(L, 1) = Ty (1)

660, 1) =0,
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BEAM FLEXURE INCLUDING SHEAR
DEFORMATION AND ROTATORY INERTIA

A o(x t)

B(x, t) = shear angle
—
ﬁ = — ?—l—}- 5 /k _ Wa(x, t) = rotation
= X T ;
o T s
v
X
X
L 5 ,
V=1 [ E@?ds et [ ([ aa)es
0 0 A
- 2
— 1
V,—-zi/o. xGA,de K=%
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BEAM FLEXURE INCLUDING SHEAR
DEFORMATION AND ROTATORY INERTIA

L L
Vp = %‘f El(@)*dx V, = %f xGAB* dx
0 0
1 - ' N2 1 y I )2d
T=5 pAWW) dx + 5 : pl(a) dx
0 .

L
3W"C=f p,(x,t)dv(x,1)dx
0
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Application of the Extended Hamilton's
Principle

) 2
/ 3(T-V)dr+f SW..dt =0
| 1 {1
O —

1 L |
1 [ fo S[pA®)* + pI(a)? — EI(«')? — kGA (a — v')}1dx dt
r'l

1 pL
+] f pydvdxdt =0
J1i JO
-

School of Mechanical Engineering
Iran University of Science and Technology



Application of the Extended Hamilton's
Principle

Integrating by parts, and noting that §v(x, 1;) = Sv(x, t,) =
dba(x, t;) = da(x, t,) = 0, we obtain

1 L
f [ {—pAv — [kGA(a — V)] + p,} Svdx dt
S| 0 , |
i) L | :
+ f f [—pla + (Eld') — kGA(a — V)] 6 dx dt
5] 0 . . -

1 1

fi ' . : | | I2 o |
+f [«GA(a — V') dv ][;’ dt — f [(Eld") b ]l:;‘ dt =0
Ji - - fH .
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Timoshenko Beam Theory

03

[kGA(e — V)] + pAb = p.(x, 1)

kGA(a — V') — (Ela'Y + pla =0

(k GAB)Sév =0 at x =0
(k GAB)év =0 atx =L
(El a')éa =0 Catx=0
(Ela)éa =0 atx=1L

School of Mechanical Engineering
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Timoshenko Beam Theory

If the beam has uniform cross-sectional
properties, the two coupled PDEs may be
combined to give a single equation in V.

1
a ="+ -—-—(py — PAV)

8%v A82 / %
E’é’F" Py = P02 P %%

) “Bemoulli—E:;er theory — principal rota:;ry inertia term
El 9° 3%v ol 32 azv)
—pPA— - = PA— =0
+KGA dx? (p, P ar? ) x GA 9t? . at?

o ———— 4 b - — .
prnincipal shear deformation term combined rotatory inertia and shear deformation

@-
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Mathematical Models of Continuous
Systems

» Applications of Newton's Laws: Axial Deformation and
Torsion

» Application of Newton's Laws: Transverse Vibration of
Linearly Elastic Beams (Bernoulli-Euler Beam Theory)

> Ap
wit
> Ap

nlication of Hamilton's Principle: Torsion of a Rod
n Circular Cross Section

plication of the Extended Hamilton's Principle:

Beam Flexure Including Shear Deformation and
Rotatory Inertia (Timoshenko Beam Theory)
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Structural Dynamics

Lecture 15: Free Vibration of Continuous Systems (Chapter 13)

By: H. Ahmadian
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Free Vibration of Continuous Systems

» Free Axial and Torsional Vibration
» Free Transverse Vibration of Bernoulli-Euler Beams

» Rayleigh's Method for Approximating the
Fundamental Frequency of a Continuous System

»Free Transverse Vibration of Beams Including
Shear Deformation and Rotatory Inertia

»Some Properties of Natural Modes of Continuous
Systems

» Free Vibration of Thin Flat Plates
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FREE AXIAL VIBRATION
(AEu'Y — pAu =0

'u(x, t) = U(x)cos{wt — a)
(AEU"Y + w*(pAU) =0

2 2
d_U.;,_.‘e_ci_U:O




FREE AXIAL VIBRATION

d°’U | ., P
— =0 s R
2 + AU A= 5

U(x) = A cosAx + A, SInAx

End conditions

dU

Fixedend: [J = (Q Freeend: -E—; =0



FREE AXIAL VIBRATION

Example:

U v L —
( )_ dx x=L L L | 'I_" . -J

U(x) = A, cosAx + AzsinAx
UQ)=4,=0 awy = A;hcosAL =0 COSAL =0

dx | _,
n 3w 1

. ')uL-—- 7 Ty ’(TT—E)R',

b = X (E)I/Z (AL), (E)l/z @r—1)r (E 1/2

School of Mechan IE g ing
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FREE AXIAL VIBRATION

Example:

ﬂ ¢1(x)

@, (x) = sin

0.00

School of Mechanical Engineeri
Iran University of Science and

1.00 —
/-l
0.00

2r — 1l Tx
2 L
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1.00 —
x/L
0.00 —>
-1.00 l
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FREE TRANSVERSE VIBRATION OF
BERNOULLI-EULER BEAMS
(EIV")' + pAt =0
v(x,1) = V(x)cos(wt — o)
(EIV"Y' — pA 0V =0
Free vibration of a uniform beam,

av. 4
— 4 2P
X El

V(x) "—“—-"Al E’A’x -+ Agige_}‘x - A3'et'kx + AN-—EM




FREE TRANSVERSE VIBRATION OF

BERNOULLI-EULER BEAMS
V(X) = AI elx -+ Age_kx + ABeikx + A4(,+—1'JL1'

Two useful alternative forms are

V(x) = Bie* + B,e™ + B;sinAx + B, cos Ax
and

V(x) = C,sinhAx 4+ C,cosh Ax + Ci;sinAx + C,cos Ax

There are five constants in the general solution:
the four amplitude constants and the eigenvalue.

School of Mechanical Engineering
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FREE TRANSVERSE VIBRATION OF
BERNOULLI-EULER BEAMS: Example

E—3

V(x) = C,sinh Ax + C,coshix + CysinAx + C4€0s Ax

d?v

Vo) = -z =0 » C,=Ci=0.
x=0
42V - CysinhAL + C;sinAL =0
L) = = | = Sl |
V( ) dxz x=L (Cl Slnh A,L - C3 Sin }sL) = 0

- 1/2
Ci =0 sinAL=0 A=rm/L, o = (fﬁ)z (%)
o,
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FREE TRANSVERSE VIBRATION OF
BERNOULLI-EULER BEAMS: Example

n2 EI)

A

Mode 1 V \
rit ]

¢,(x) = sin 7

Mode 2

Mode 3

/\/

w3 = 9w,

N




FREE TRANSVERSE VIBRATION OF
BERNOULLI-EULER BEAMS: Example

21"("'” V(x) = C, sinh Ax + C,coshix + C; sinAx + C4cos Ax

= ) |
—_—

dv d*v d’v |

dx |, o dx? L dx> | .
-0 1 o 1 TJgc 0

A0 0 |G 0 |
A2sinhAL A2coshAL —AZsinAL —A2cosaAL || G| |0

- A3coshaL A’sinhAL —A3cosAL A3sinal | LG ) L0
“
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FREE TRANSVERSE VIBRATION OF
BERNOULLI-EULER BEAMS: Example

cosALcoshAL +1=0

ML =1.8751, AL = 4.6941,
AL =7.8548, AL = 10.996

(A L)? t/2
W, =
L2 (pA)




Mode 1

Mode 2

Mode 3
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RAYLEIGH'S METHOD FOR
APPROXIMATING THE FUNDAMENTAL
FREQUENCY OF A CONTINUOUS SYSTEM

Lord Rayleigh observed that for undamped free
vibration, the motion is simple harmonic motion.
Thus,

v(x,t) = V(x)coswpt = CW(x) COS wrt

Rayleigh also observed that energy iIs conserved.

»the maximum kinetic energy Is equal to the
maximum potential energy, that Is,

Tinax = Vinax
.

School of Mechanical Engineering
Iran University of Science and Technology



RAYLEIGH'S METHOD FOR
APPROXIMATING THE FUNDAMENTAL
FREQUENCY OF A CONTINUOUS SYSTEM

. 1' L 2 . pvix )
Y= 5] EI(v")2 dx + Lk v?
{'IL o é Xs | | )
' 1 N2 ) 7 em, 1>
T= EL pA(U) dx+ -z-msvf 2 ﬁki
| , i _}
U(x,.r) =C'¢'(x) COS Wyt o
L , R

Vaax = lkC2 k = f EI(Y")"dx + k¥ (x)] P

0 R(V) = wi — —

1 m

L
T = _w%mcz m —f pszdx +ms[¢f(x,)]2
0

Scho IfM chan IEg ing
Iran Uni yofSc dT chnology
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Example . Approximate fundamental frequency
of a uniform cantilever beam

x\2
The shape function — W(X) = (L)

L AL
=[ pAglfzdx = £
0 5

, 2 L D g 4E]
lA’f(«f)=1‘2 >k=/{; El(g{/)dx--p
, k . 20EI 4.472 (51)‘/2
W, = > (o =
R pAL4 R [2 oA
~3.516 ( EI1)\'/?
“TmLr (pA)
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FREE TRANSVERSE VIBRATION OF
BEAMS INCLUDING SHEAR
DEFORMATION AND ROTATORY INERTIA
Consider a uniform, simply supported beam:

Equations of motion:

o =" — L
| - kG .
oty 8% 2' E 3%y pzArG 3ty
i 1 =0
El 3x*4 T PASHE a2 AT ( T KG) dx2 012 + kG or

Geometric boundary conditions:
v(0,1) =v(L,t) =0

Natural boundary conditions:

«@'(0,t) =a'(L,t) =0

Scho IfM chan IEg ing
I[ran Uni yofSc dT chnology



FREE TRANSVERSE VIBRATION OF
BEAMS INCLUDING SHEAR
DEFORMATION AND ROTATORY INERTIA

v(x, 1) = V(x) COS wt

V' - pw )coswr
K'G ' '

So the boundary conditions reduce, respectively, to
V() = V(L) = 0
VH(O) VH(L) -

Scho IfM chan IEg ing
I[ran Uni yofSc dT chnology



FREE TRANSVERSE VIBRATION OF
BEAMS INCLUDING SHEAR
DEFORMATION AND ROTATORY INERTIA

v(x,t) = V(x)coswt

AR 3%v 5 E I*v p2Ars a*v
| — 1 =0
El axt & a2 PATG ( T KG) dx2 912 + kG or

_ E E
VYAV 242 1+ — |V + A3 —Vv =0
AT ( K G) “kG
The simply supported beam mode shape satisfies both the

boundary conditions, and the equation of motion.

. rnx
V,.(X) = C sIn —z—-

School of Mechanical Engineering
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FREE TRANSVERSE VIBRATION OF
BEAMS INCLUDING SHEAR
DEFORMATION AND ROTATORY INERTIA

rend 4 42(1'71')2 s 2 E (rn')Z 84 E
) - — A ASr =0
(L) AT+ATr, 7 + erG 2 + Ve

(a) \ (b) t© (d)

Bernoulli-Euler beam The shear correction term
characteristic equation

The rotatory inertia correction term

Scho IfM chan IEg ing
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Free Vibration of Continuous Systems

» Free Axial and Torsional Vibration
» Free Transverse Vibration of Bernoulli-Euler Beams

» Rayleigh's Method for Approximating the
Fundamental Frequency of a Continuous System

»Free Transverse Vibration of Beams Including
Shear Deformation and Rotatory Inertia

»Some Properties of Natural Modes of Continuous
Systems

» Free Vibration of Thin Flat Plates
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Structural Dynamics

Lecture 16: Free Vibration of Continuous Systems (Chapter 13)

By: H. Ahmadian

ahmadian@iust.ac.ir

Experimental
Modal
Analysis

Finite
Element FerEETo
Modelling [ k5

Dynamics

School of Mechanical Engineering
Iran University of Science and Technology



Free Vibration of Continuous Systems

> Free Axial and Torsional Vibration
> Free Transverse Vibration of Bernoulli-Euler Beams

» Rayleigh's Method for Approximating the
Fundamental Frequency of a Continuous System

»Free Transverse Vibration of Beams Including
Shear Deformation and Rotatory Inertia

»Some Properties of Natural Modes of Continuous
Systems

> Free Vibration of Thin Flat Plates
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SOME PROPERTIES OF NATURAL MODES
OF CONTINUOUS SYSTEMS

Following properties associated with the modes
are considered:

»scaling (or normalization),
»orthogonality,

»the expansion theorem, and
»the Rayleigh quotient.

These are illustrated by using the Bernoulli-Euler
beam equations.

School of Mechanical Engineering
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SOME PROPERTIES OF NATURAL MODES
OF CONTINUOUS SYSTEMS: scaling

L
M, = f pAqb dx | | K, =f El (va;')?'dx
0

| L
f (E1d))" ¢, dx — w?[ pAcpf' dx =0
0 0

) L L
(EL$)Y.|, — (EI$)e.]. + f El (¢")* dx — o? f pAP*dx =0
. 0 0

Orthononnal modes

p) Kr L /
w, = M, = | pA¢*dx=1
0 .
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SOME PROPERTIES OF NATURAL MODES
OF CONTINUOUS SYSTEMS: orthogonality

L L
f (EI1$")'¢, dx — w? f pAP, ¢, dx =0
0 0

L ' L | |
f EI (¢")¢! dx — o f pAD. P, dx =0
OL OL
[ Er@perax-u? [ pass.dx=0
0 0
(w? ~ »}) f pAd,¢,dx =0
' 0
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SOME PROPERTIES OF NATURAL MODES
OF CONTINUOUS SYSTEMS: orthogonality

—— -
[ El¢ ¢, dx =0,
0

e
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SOME PROPERTIES OF NATURAL MODES
OF CONTINUOUS SYSTEMS: orthogonality

To demonstrate the orthogonality relations for
beams with loaded boundaries, we consider two
distinct solutions of the eigenvalue problem:

d? X |
o [EI( )— R )} = wm(x)Y,(x), 0 <x <L
X JC |
d’ dZY (x) 2 x> e -
) EI( ) = wym(x)Ys(x), - :1
42y k .
Y(x) =0, EI(x) x(x) =0, x=L i | (), El(x)
5 2 AR e
EI(x)d Y(x) =0, -%— [El(x)d (x)] kY (x), x =0

School of Mechanical Engineering
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Orthogonality relations for beams
| L d? l: r(x)] 2 . |
/ Yi(x)—= EI(x) X =uw, / mx)Y,(x)Y,(x)dx
0 0 -

dx? dx?

L d> Y, (x) d 42y, ) -
fom)?[mu = ]dx—-:{n(x)a[m(x) ) ]}

0
2
B [dYs(x)E (x )d Yy (x)il
dx

0

. L 2 d2
| -|-[ El(x)d Ys(x) r(x) dx
0 dx dX"

d2Y,(x) d*Y, (x) 1
dx? dx?

L
:kYS(O)Y,—(O)—f—/ EIx)
/0

L 42 2 L
El(x) ; () d 5 (x) dx =w3[ m(x)YS(x)Yr(x)dx
x2 x2 | 0o

st(O)Yr(0)+f

0
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Orthogonality relations for beams

L d2Y.(x) d*Y, (x)

kY, (0)Y, (0) + fO E1C) = 5

42V, (x) d2Y,(x) sz a
. —dx=w? | mx)Y(x)Y,(x)dx
g g =t | %

. |
dx = w? [ m(x)Y;(x)Y, (x)dx
0 |

L
kY, (0)Y,(0) + [ EI(x)
0
I | | 5 ,
[ mx)Y,(x)Y;(x) =0, r,s =1,2,...; w; 7 W,
0 .

dx +kY,(0)Y,(0) =0,

LE'I d2Y,(x) d*Y,(x)
[0 2 dx? dx?
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Expansion Theorem:;

Any function V{x)that satisfies the same
boundary conditions as are satisfied by a given
set of orthonormal modes, and is such that (E£/
V")"1s a continuous function, can be represented

by an absolutely and uniformly convergent series
of the form -

Vix) = Zcrqb,(x)
- r=1

L
r=[ pAV¢)rdx Mr-'_:l
0

School of Mechanical Engineering
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RESPONSE TO INITIAL EXCITATIONS:
Beams in Bending Vibration
32 3%y(x,t) 82y(x f)
) [EI() o ] m(x)

, O<x < L

X
i r . d? ¥
B - Py dx(x)} r(t)—zm(x)Y(X) is24

= { rt d* *Y, (x)
LA e 0T e

L o 2
= [ / m(x)YS(x)Y,-(x)dx]d )
o |

dt?



RESPONSE TO INITIAL EXCITATIONS:

Beams in Bending Vibration

To demonstrate that every one of the natural
modes can be excited independently of the other
modes we select the initials as:

yo(x) = AY,(x)

L Aforr=p
nr(0) = A/ p(x)Y, (x)Y,(x)dx =
| 0

Acosw,t forr =p
nr(t)z -
Qforr=1,2,...,p—1,p+1,...

y(x,t) = AYp(x)cosw,t

School of Mechanical Engineering
Iran University of Science and Technology

Oforrz1,2,;..,p—1,p+1,...



RESPONSE TO INITIAL EXCITATIONS:
Response of systems with tip masses

[ du(x,1)” %u(x, 1)

— | EA(x = m(x , O<x < L

ax | DA, )5 .
u(0,1) =0

Boundary conditions du(x,t) 0%u(x, 1) o
—EA(X) o =M ¥ , x =1L
Initial conditions | u(x,0) = ug(x), dulx, t) = vp(x)
at  |,_g
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RESPONSE TO INITIAL EXCITATIONS:
Response of systems with tip masses

w0y =" Ur(x)m (1)

S| P R |

r=1

m(x)Us (X) U, (X)dXJ M (1),

L ._ -
f MUy () Us (x)dx = 65 — MU (LU, (L),
0

L
f Us(x)i [EA(x)dUr(x)]dx — [Us(x)EA( )dU (x)]
0 dx dx -

2
— W, Ors
x=L

dx

Z[MU ()i (1) + EAG) ”( ) m]

Observing from ___ r=1
boundary condition o [ azu(x 0 du(x, t)]
| M

x=L

=0
x=L

+ EA
ot (x) ox
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RESPONSE TO INITIAL EXCITATIONS:

Response of systems with tlp masses
ns(t)‘l'wsns(t) --0 S——l 2

0
Tls (f) = Ts (O) COS Wy ! - 773 ( SlIl UJS f.,
W

u(x,0) = 3 Uy, (0) = o (x)
s=1

L
773(0)2/ m(x)Us (x)ug(x)dx + MU (L)uo(L),
0 .

Similarly,

L
7'15(0)=] m{x)Us(x)vo(x)dx +MUg(L)vo(L),
0

Scho IfM chan IEg ing
I[ran Uni yofSc dT chnology



Example:

Response of a cantilever beam with a lumped
mass at the end to the initial velocity:

aty(x,t)  3%y(x,1)

_EI

A = m a2 ,O<x < L
3y (x,1 0%y (x,t) 8 y(x,1) 3%y (x,1)
X \2 X\ x\4
Vo x)-—-—13.72(-—) —23,22(—) +9.26(-_)
( L L L
Vo(x)
15 +
10 +
5+ . o o |
0 ' ' | -‘FL X

@-
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Iran University of Science and Technology

x =L



Example:

Y, ) =) Y (x)n(t)

. .
m/ Y, (x)Ys(x)dx + MY, (LYY (L) = b5,
0

EI{/OLY( ) i )dx—[Y( )dzgx)] _L} = w2,
’}?s(f)—kwf’r?s(t)—Z{Ys(X) [MYr(X)ﬁr(l‘)-—EI d;( i (f)” =0,
1 | _ x=I
ns(0) .

Te —I—wfns(t):(), s=1,2... ns)= sin w,t,

Wy
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Example:

L
ﬁs(0)=mf Yy (x)vo(x)dx + MYs(L)vo(L)
0 |

—m fo ’ Y, (x) [13.72 (%)2 —2322 (%)3 + 9;26 (%)4]01;; —0.24MY,(L),

M=mlL,
Xy . ' ’ \ . -
_ sin 3, L +sinh 3, L ,
= i — — x —cosh SIN Wy t
y{_(x,t) ZICF [smﬁrx sinh 3, x cos,@rL—kcoshﬁ,.L(cosﬁrx co ﬁrx)] Wy
= . :

C1 = —0.0404, C = 0.7761, C3 = —0.0003,

—

Because initial velocity resembles the 2"4 mode

School of Mechanical Engineering
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RESPONSE TO EXTERNAL
EXCITATIONS

» The various types of distributed-parameter
systems differ more in appearance than in
vibrational characteristics.

»\We consider the response of a beam In
bending supported by a spring of stiffness k at
x=0and pinned at x=L.

8% T 92 t t
—53 EI(x) yix. )] + f(x, 1) =m(x) y(x ) , O<x <L
X
Pyt D y( ) %y (x,t)
B0 " 550 =0 g [P [ sben =0 020y =0, EI0 =2 52 =0, x=1

School of Mechanical Engineering
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RESPONSE TO EXTERNAL

EXCITATIONS

y(x.6) =Y Y, (x)m, (1)
r=1

Orthonormal modes

L
[ mx) Y, ()Y, (x)dx = b5, 1,5 =1,2
A _

.....

L 2 2 _
f Ys(x)dil_ [El(x)d I (x)}dx — wfé}s.
0 o

x2 dx?

iir (1) +win, (1) = N, (1),

L
No(0) = [ Y, (x) £ (x, 1)dx
0

School of Mechanical Engineering
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RESPONSE TO EXTERNAL

EXCITATIONS: Harmonic Excitation
f(x,t) = F(x)cos

; |
N,(t) = [/ Y, (x)F(x)dx] cos 2t = F, cos (2,
0

L | .
Fr:/ Y x)F(x)dx, r=1,2,...
0 |

Controls which
mode IS K F

"
excited. 1) = cos 21,
7?3’( ) W — Q}: Controls the

_ | _ resonance.

o0
(x, 1) = Y, (x) | cos 2t
y(x,1) ng_m ()

School of Mechanical Engineering
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RESPONSE TO EXTERNAL
EXCITATIONS: Arbitrary Excitation

1 i
(1) = —-f N, (t —7m)smw,7dr, r=1,2, ...

y(x,t)._z (x)[ N(t—*r)smwr’rdT

r=1

The developments remain essentially the same
for all other boundary conditions, and the same
can be said about other systems.

School of Mechanical Engineering
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Example

Derive the response of a uniform pinned-pinned
beam to a concentrated force of amplitude £,
acting at x = L/2 and having the form of a step

function f(x.1) = Fab(x — L/2)ee(?)

Orthonormal Modes

/ = ()2 / E[4 Y, (x)-—1/—-——'smr—73, r=1,2,.

L I _
N, (t) = / Y, () £ (x. dx = | —— Foge(t) f sin — §(x — L /2)dx
» 0 mL 0 L

2 o o | 2 -
=) = Fore(t) sin — = (=1)""V7% | = Fyre(t), r = odd
mL 2 ml.
School of Mechanical Engineering
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Example

1 t ' —1 (r——l)/ZF 2 | )
N (1) = —"—f Ny (I—T)Slﬂerd’T—— ( -) L / et — T)SINW,TdT
1 (r— 1)/2F
( ) U (l — COSWyl)
(—_I)U—WZFO mL* [ 2 , [EI |
) 7TV L cos{r) . mL4t , r =odd

- o0 \(r—1)/2 14 A ' |
(D D2RymLd 2 rmx o2 | El
y(x,t) = ZYr(x)nr () = Z  rm)? El mL > A 1 __COS"(F?T) mL4t

r=1,3,.

PR} o (—DUDZ gy L, [EI
— . —— | 1 —cos(; —t

T4E] r__; r4 - L | S(rm) m L4

@-
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Free Vibration of Continuous Systems

> Free Axial and Torsional Vibration
> Free Transverse Vibration of Bernoulli-Euler Beams

» Rayleigh's Method for Approximating the
Fundamental Frequency of a Continuous System

»Free Transverse Vibration of Beams Including
Shear Deformation and Rotatory Inertia

»Some Properties of Natural Modes of Continuous
Systems

> Free Vibration of Thin Flat Plates
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Structural Dynamics

Lecture 17: Free Vibration of Continuous Systems (Chapter 13)

By: H. Ahmadian

ahmadian@iust.ac.ir

Experimental
Modal
Analysis

Finite
Element FerEETo
Modelling [ k5

Dynamics
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Free Vibration of Continuous Systems

> Free Axial and Torsional Vibration
> Free Transverse Vibration of Bernoulli-Euler Beams

» Rayleigh's Method for Approximating the
Fundamental Frequency of a Continuous System

»Free Transverse Vibration of Beams Including
Shear Deformation and Rotatory Inertia

»Some Properties of Natural Modes of Continuous
Systems

> Free Vibration of Thin Flat Plates
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Rayleigh Quotient:

L
/E[(V")zdx
. L
[ pAV 2 dx
0

cw? + c2w? + 2wl + - -
iyt

2 1+ (‘i‘z/cl)z(tﬁt)z/fﬁf)l)2 + (03/(:1)2((,03/&)])2 + ...

"1+ (cr/cn)? + (cs/c1)? T

k
R(V) = — =

R(V) =

R(V) = w

R(V) > o

School of Mechanical Engineering
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Example: Lowest natural frequency of the
fixed-free tapered rod in axial vibration

0= 4G raa- 22 [ 46"

The 15t mode of a uniform clamped-free rod

X

a trial function: U(x) = sin —
as (x) Sm2L'\

A comparison function

LEA [dU(x) 2d
R(U)=w2=/0 e ] : Sy (7T )2 (L/127%)(57* + 6)
f U (1)dx m \2L/ (L/127%)(57* —6)
O .

EA
w=17749y/ —

mlL?
.

School of Mechanical Engineering
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THE RAYLEIGH-RITZ METHOD

The method was developed by Ritz as an
extension of Rayleigh's energy method.

» Although Rayleigh claimed that the method
originated with him, the form in which the
method Is generally used is due to Ritz.

The first step in the Rayleigh-Ritz method is to

construct the minimizing sequence:
Y(”(x) =ad1(x) undetermined coefficients

Y(z)(x) a1¢1(x)+a2¢2(x) Za b (x) /independent trial functions

i=1

YO (6) = ar61(0)+ a2206) + -+ ann () = 3 e O
' ' i=1

School of Mechanical Engineering
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THE RAYLEIGH-RITZ METHOD

AW = R(Y™) = R(ay, a, ... ,a,)

OR JR OR
SR = —dajq oar + ... oa, = 0
3(11 3&2 aan
The independence of the trial functions implies
the independence of the coefficients, which in turn
Implies the independence of the variations

oai,oas, ..., 0a,—>»

OR
—=0,i=1,2,....,n

aa,;

School of Mechanical Engineering
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THE RAYLEIGH-RITZ METHOD

N(ay,ar,...,a
A(n) =R(a1,a2,... san): ( 72 n)

D(alaa%--- aan)

— — —

9R (8N /da;))D —(dD/da;)N 1(3N NaD)

861;' l)2 ID 8(1,7 Daai
1 fON aD
= AW V=0 i=1,2,...,n
D \ dy; da;
aN oD
AW =0,i=1,2,...,n

da; da;

Solving the equations amounts to determining the coefficients, as well
as to determining )} )

School of Mechanical Engineering
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Example : Solve the eigenvalue problem for
the fixed-free tapered rod In axial vibration

. . . (2i—Dmx N
The comparison functions ¢;(x) = sin 57 ,i=1,2,...,n

L L
Vax = l[ EA(x) [dU(x)] dx  Tref = 1] m(x)Uz(x)dx
2__: 0 dx 2 0

n

- (n) (n) (2f— I)ﬂ'}CI
U“(x) Za f,b;(X)—X; =7

Vmﬁzﬂzzk(m (), () wa__zz () (n) (n)

i=1j=1 i=1 j=1

School of Mechanical Engineering
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Example :

L
() doi(x) dpj(x) |
kij -/0 EA(x) o p dx

dx,

6EA Qi — D7 2j — D7 L[ 1 /x\2 i —Dmx  (2j— Drmx
= / 1 — ( )]cos COS
0

5 2L 2L 2\L 2L 2L

' L
m® = fo m ()i ()5 ()dx

L

dx,i,j=1,2,....n

6m (L 1 /x\2] . Qi—=Drx . 2j—Dnx
= — 2( ) S1n S

5 Jo | 2 21 2L

School of Mechanical Engineering
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Example: n=2

K(z)_ EA[ 1.383701  0.337500 ] MO L[ 0.439207  0.075991 ]

L | 0337500 11.253305 0.075991 0.493245

2 _ EA (9) 1] 1511481
“1 "1'774312\/ oz M =mLT s

B EA a® 12| —0.233683 |
— 4.825444. | =2
S2oddd— T A =ml) 1.443148

3
U@ (x) = 1.511481sin — —0.015311sin ——
oL oL

3
U3 (x) = ~0.233683sin 2 +1.443148sin =

@-
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Example: n=2

(2)
Ui (x)
1 1
X
0 }
= 17743 | g
2) 1= 1. mL2
1U2(x)

_1 ] 0y = 4. - LZ
School of Mechanical Engineering
m Iran University of Science and Technology




Example: n=3

Y 1.383701  0.337500
K® == 0.337500 11.253305
L | _g104167 2.109375
0.439207 0.075991

M® =mL]  0.075991 0.493245
—0.021953  0.064592

@-

03

W =1.774247

m,__.

2.109375

—0.104167 }

30.992514

0.064592
0.497568

(3)

' —0.021953 ]

EA
wy =4.822187, — . a 2l = (mL)~"/

EA
W =17.931607,/ —,
mL2

School of Mechanical Engineering
Iran University of Science and Technology

(J)
3

(mL)_1/2

1.511715
—0.015872
0.002829

—0.236352
1.448321

| —0.040348

0.097373
—0.163450
1.432793




(3)

Example : n= 3,]

Up(x)

m1_1.7742 ml2 0 -

(3)
Uj (x)
1..
| EA
> = 4.8222 mLZ 0
11!
(3)
Us{x)
1 N
EA
w3=17.9316 /ng 0
11

School of Mechanical Engineering
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Example :

The Ritz eigenvalues for the two approximations
are:

AP =3.148183EA/mL?, A =23.284913E A /mL>

A =3147951EA/mE2, A =23.253490EA/mL?, NP = 62.910394EA /mL>

» The improvement in the first two Ritz natural
frequencies is very small,

»Indicates the chosen comparison functions
resemble very closely the actual natural modes.

»Convergence to the lowest eigenvalue with six
decimal places accuracy Is obtained with 11
terms: A"V =3.147888EA/mL?

@-
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Truncation

Approximation of a system with an infinite number
of DOFs by a discrete system with n degrees of
freedom implies truncation:

an_{_l :an+2:-..:O

Constraints tend to increase the stiffness of a
system:

A‘S‘H) EA;-, ?"21,2,...,?’1

The nature of the Ritz eigenvalues requires
further elaboration.

School of Mechanical Engineering
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Truncation

A question of particular interest is how the
eigenvalues ™’ ¢ =1,2,...,n+1) of the (n +1)-DOF
approximation relate to the eigenvalues,®» ¢ —1,2.... .»
of the n-DOF approximation.

We observe that the extra term In series does not
affect the mass and stiffness coefficients
computed on the basis of an n-term series
(embedding property):

X X
Ayt M x x (1) _ K™ x
| XX ox X X X

@-
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Truncation
For matrices with embedding property the

eigenvalues satisfy the separation theorem:

®)
A, A" 1.3
3
G )
--.~_/})3 )
S~al A 2.6
2«3F— ———————————————————————————————
2)
A |
G.__. &2(3)
~. ()
oL
""'-.é?___ 12(5) 2.(6)
) Aty
2—--————-- ————————————————————————
(1)
1 2)
- A 3)
ﬂLl ___________________ ::O:::::%::::QI
0 1 2 3 4 5 6

School of Mechanical Engineering
Iran University of Science and Technology

+1 (n+1) (n) | (n+1) (n) (n+1)
APHD < AP < A0 <A << ATTD < A <0

n+1

AUFTD < AW r =1,2,... 1

¥ 3

lim AX™ =X\, r=1,2,...,n

l—» 00



Free Vibration of Continuous Systems

> Free Axial and Torsional Vibration
> Free Transverse Vibration of Bernoulli-Euler Beams

» Rayleigh's Method for Approximating the
Fundamental Frequency of a Continuous System

»Free Transverse Vibration of Beams Including
Shear Deformation and Rotatory Inertia

»Some Properties of Natural Modes of Continuous
Systems

> Free Vibration of Thin Flat Plates
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Structural Dynamics

Lecture 18: Free Vibration of Continuous Systems (Chapter 13)

By: H. Ahmadian

ahmadian@iust.ac.ir

Experimental
Modal
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Finite
Element FerEETo
Modelling [ k5

Dynamics
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Free Vibration of Continuous Systems

> Free Axial and Torsional Vibration
> Free Transverse Vibration of Bernoulli-Euler Beams

> Rayleigh's Method for Approximating the
Fundamental Frequency of a Continuous System

> Free Transverse Vibration of Beams Including
Shear Deformation and Rotatory Inertia

>Some Properties of Natural Modes of Continuous
Systems

> Free Vibration of Thin Flat Plates
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VIBRATION OF PLATES

> Plates have bending stiffness in a manner
similar to beams in bending.

> In the case of plates one can think of two
planes of bending, producing in general two
distinct curvatures.

> The small deflection theory of thin plates, called
classical plate theory or Kirchhoff theory, 1s
based on assumptions similar to those used In
thin beam or Euler-Bernoulli beam theory.

School of Mechanical Engineering
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EQUATION OF MOTION: CLASSICAL
PLATE THEORY

The elementary theory of plates is based on the following assumptions:

>

>

The thickness of the plate (h) is small compared to its lateral
dimensions.

The middle plane of the plate does not undergo in-plane
deformation. Thus, the midplane remains as the neutral plane after
deformation or bending.

The displacement components of the midsurface of the plate are
small compared to the thickness of the plate.

The influence of transverse shear deformation is neglected. This
Implies that plane sections normal to the midsurface before
deformation remain normal to the rnidsurface even after deformation
or bending.

The transverse normal strain under transverse loading can be
neglected. The transverse normal stress is small and hence can be
neglected compared to the other components of stress.

School of Mechanical Engineering
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Moment - Shear Force Resultants:

Pw 0w
= (a—+‘ay—)
2w 8w _ EW
My=-D ("a"j?i' T ""é‘;i') T 12(1 - 1?)
32w
xy — x=—({1-v)D
My = M, (1=v) dx dy
0. = M My B ?w 9w
T x dy 9x \ 9x2  dy?
oM, M, d (*w 3w
0, =7+ 5 =Py GEt e
0y 0x dy \ dx dy

School of Mechanical Engineering
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Equation of motion

/ ] ~Myy + 5 dx

: 7 le""d—a%Ydy MY+%%!dY . p Myx"'d;ﬂ e dy

00; | 30, 52w

| + JC, ,t — h'_

™ % fx,y.t)=p o3

*w 3*w 3%w 3% w

D -2 | + oh— = f(x,y.,f
(Bx“ 0x% dy* 8y4) SFY?. Gy

School of Mechanical Engineering
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/ a : > X
y “
s %
7 /
A : g
Fixed edge
::r-i-— s Hi
g ’
A r"
7 /
7L 3
Y wlay=0 qw =0
WERD=T "9 @y ™
U,..- ——————— Z — et P X
‘1
Y
i
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BOUI\OIDARY CONDITIONS

> X
Simply supported
" edge N
b w(a, y t)=0
i, azw) Pw _
— —_— —_— =0 or =
,=-o{ZF 3 | @) o | @y

yY

O$H _____ .

< ¢
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BOUNDARY CONDITIONS: Free Edge

> There are three boundary conditions, whereas
the equation of motion requires only two:

MI‘x:a =0 OQxly=q =0 Mxy‘x:a =0

> Kirchhoff showed that the conditions on the
shear force and the twisting moment are not
Independent and can be combined into only
one boundary condition.
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BOUNDARY CONDITIONS: Free Edge

Replacing the twisting moment by an equivalent
vertical force.
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BOUNDARY CONDITIONS

0 a -
L Free edge — \ /
Fw
b A sz_D(axz+vay )(ayt)
oM Bw Pw
: V —x =
Yy Oct dy [8x3 teV ox dy? ] (a,3,9)

School of Mechanical Engineering
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BOUNDARY CONDITIONS

0 a - x
Edge supported on a M, = D( w Iy az,w) =
— linear elastic ax2 2 )| (@y.0)
sping v, D[a?’ oy O ]
— . + —
b PR e | R
=~ kyw(a,y,b)
Op—- % X
vy
ky ky

zY

School of Mechanical Engineering
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BOUNDARY CONDITIONS

0 a_

X
Edge supported on a
torsional
< elastic spring T
b

V=D (9w aZw) V)

Mi==D\32 " 52 N@yn™ 2 axl(ayp)
Y + 83 .l ]

Vp=-D 8x3 * axaﬁ (ayt)

School of Mechanical Engineering
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FREE VIBRATION OF RECTANGULAR
PLATES

*w 9% w 0*tw 92w
D|{— 42
dx4 dx29y%  oy*

wx,y,t) = W(x, y)T(r)

d*T (1)
dt?

VAW (x, y) = AW (x,y) =0 4= PhO
D

+@’T(t) =0 T() = Acoswt + Bsinwt
2




FREE VIBRATION OF RECTANGULAR
PLATES

(V= AW, y) = (V2 + A3V = W)W (x,y) =

*W, 3*W,

(V225 Wi(xy) = —— + e FA2Wy(x,y) =
0°W, 3*W
(V2 =AY Wy(x,y) = axj | ay; AEWa(x,y) =



FREE VIBRATION OF RECTANGULAR
PLATES

W(x,y) = A sinax sin 8y + Ap sinax cos By
+ A3 cosax sin By + A4 cosax cos By
+ As sinh @x sinh ¢y + Ag sinh 8x cosh ¢y
+ A7 cosh8x sinh ¢y + Ag cosh8x cosh ¢y

}.22(12—!-52:92-‘-(;‘)2



Solution for a Simply Supported Plate

d*w AW
W@, y) = E;E'(Oa y)=W(a,y) = = (a,y)=0
d*w d*W

W(x,0) = —d}?(x,O) = W(x,b) = —d-y-z—(x, b) =0
We find that all the constants A;except A, and

sinowa = 0 > Upd = MTT, m=1,2,...
sin Bb = 0 » Bub =nm, n=12,...
' D\ m\2  (n\2] ( D\
a2 il R o i il
o = A (ph) " [(a) +(b)](ph) |
mmTx . Ay

sin —-—, mn=12,...

Win(x,y) = Aimn Sin ,
.
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Solution for a Simply Supported Plate

. MAX . RAY
Whn(X,y,t) = Sin Sifl —g—-—(Amn COS Wint -+ By SIN Wy tt)

MTX . R
w(x,y,t) = Z Z sin sin ——-—}—’(Amn COS Wpnt + By SIN Wy t)

m=1 n=]

The Initial conditions of the plate are:
w(x,y,0) = wolx,y)

d
"’(x y,0) = t(x,y)

School of Mechanical Engineering
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Solution for a Simply Supported Plate

2 - mrx . nu
> ) Amnsin == sin —=> = wo(x.)
a

w(x,y,O) = T.UO(JC,y)

' m=]1 n=1
dw
8_(x y,0) = wo(x,y) e I e
t . MITX . RnwYy
E E B,y SIN sin 5 = = wo(x,y)
m=]1 n=1 4

[ f wol(x,y) sin ddeddic sin m;y dxdy

mix

i1
Bn = [ f wp(x,y) sin sinm—}—;—dx dy
abwmn b

ShIth Ingme ing
Iran University o fS and Technology




Solution for a Simply Supported Plate

2
=

|
|
I
Lol
[
m=2n=1 :
Nodal Nodal
) line
line
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Solution for a Simply Supported Plate
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Free Vibration of Continuous Systems

> Free Axial and Torsional Vibration
> Free Transverse Vibration of Bernoulli-Euler Beams

> Rayleigh's Method for Approximating the
Fundamental Frequency of a Continuous System

> Free Transverse Vibration of Beams Including
Shear Deformation and Rotatory Inertia

>Some Properties of Natural Modes of Continuous
Systems

> Free Vibration of Thin Flat Plates

School of Mechanical Engineering
Iran University of Science and Technology



Structural Dynamics

Lecture 19: Free Vibration of Continuous Systems (Chapter 13)
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Free Vibration of Continuous Systems

> Free Axial and Torsional Vibration
> Free Transverse Vibration of Bernoulli-Euler Beams

> Rayleigh's Method for Approximating the
Fundamental Frequency of a Continuous System

> Free Transverse Vibration of Beams Including
Shear Deformation and Rotatory Inertia

>Some Properties of Natural Modes of Continuous
Systems

> Free Vibration of Thin Flat Plates
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Vibrations of Rectangular Plates

2

VAW (x, y) — A4 W(x,y) =0 A= p’g"
Wix,y) = X(x)Y(y)

XY +2X"Y" + XY —AXY =0

The functions X(x)and Y(y)can be separated provided
either of the followings are satisfied:

—> Y'(y) = —B°Y (1), Y (y) = —B°Y"(y)
§>Xa"f(x) — —Q'ZX(I), X””(x) _azxn(x)

School of Mechanical E g ing
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Vibrations of Rectangular Plates

Y”(y) — -—ﬁZY(y), me(y) _ _ﬁZYﬂ(y)
Xff(x) — —Q'ZX(I), X””(x) — _azxn(x)

These equations can be satisfied only by the
trigonometric functions:

SIM Oty X or sin B,y
COS Uy X COS B,y
mim nim

Oy = m=1,2,...,8, = n=172 ...
| a | b
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Vibrations of Rectangular Plates

Assume that the plate is simply supported
along edges x =0 and x =a:

Xn(x) = Asinay,x, m=1,2,...
Xn(0) = Xn(a) = X,,(0) = X,,(a) =0
Implying:

w(0,y,) = w(a,y,t) = Vw(0,y,t) = V’w(a,y,t) =0

Y"'(y) —2e2Y"(y) — A —a )Y (y) =0



Vibrations of Rectangular Plates

The various boundary conditions can be stated,

SS-55-SS5-SS, SS-C-SS-C, SS-F-SS-F, SS-C-SS-SS, SS-F-SS-SS, SS-F-SS-C
4

Assuming: A* > aj,
Y(y)=e”
st —25%a2 — (AP —at) =0

51,2 = +./A2 -+ O!,%I, §3.4 = ﬂ:i\/)kz — 0[31

Y(y) =Cisindiy + Caco8d;y + C3sinhdy 4+ C4coshdyy

— 2 _ 2 —_ 2 2
51-—\/}. os, 52—\/)L o
gineering
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Vibrations of Rectangular Plates

y=0andy= b are simply supported:

Wx,00=0 Y0)=0
W(x,b)=0 | Y(b) =0
9? 9 2
M, 0) = —D (ﬁg v__g) _y =P d4d°Y(0) _0
ay 9x* /.0 dy?
2 2 )
My(x,b)=-—D(aW v W) =0 Yo
ay? 0x2 (x.b) dy?
Cry+Cy =0
C1 siné1b + Cycos 81 + C3 sinh 85 + Cy coshdrb = 0 Cy4=0

—82C, +82C, =0 —» C2=0
—C18%sin8b — C,87 cos 81b + C362 sinh 835 + C482 cosh 826 = 0 C3=0
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Vibrations of Rectangular Plates

y=0andy= b are simply supported:

sindb =0 31=f%r-, n=12,....
: . RW
Yo(y) =Cismé;y = Ci sin __Z;_?’_
RN S . S S .

N R Ry @] 2 mmra

Win (x,¥) = Cpp siney,x sin By, mn=1, 2,...
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Vibrations of Rectangular Plates

y=0 and y = b are clamped.:

Y0 =0 —

v 0 1 0 1 Cq 0
——(0) 0 51 0 P -0 G| _]0

Y(b) =0 sindib  cosdib sinh§,b  coshéb Cz| 10
¥,  J1cosdib —8;sindib dycoshérb &ysinhédzb | | Cy 0
dy

2818,(cos 81b coshéyb — 1) — a2 sindyb sinh §2b = 0

Y,(y) = Cpl(cosh ;b — cos §1b) (81 sinh §ry — 67 sin b1 y)
— (61 sinh é2b — 85 siné1b) (coshdry — cosdpy)]
Won (X,¥) = Cun Y (y) sinoy,x
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Vibrations of Rectangular Plates

Table 14.1 Frequency Equations and Mode Shapes of Rectangular Plates with Different Boundary Conditions®

Boundary y-mode shape, Y, (y) without a multiplication factor, where
Case conditions Frequency equation Win (x,¥) = Cun X (x) Y, (y), with X, (x) = sina,x
1 SS-§8S-8S-SS sind1b =0 Y,(y) =sinf,y

2 SS-C-8S§-C  26182(cosé1b coshdrb — 1) — a.-ﬁ, sinéib sinhérp =0 Y,(y) = (coshéb — cos 81b) (61 sinhdy — &3 sinéyy)
—(8; sinh 626 — 8, sin81b) (cosh Sy — cosd1y)
3 SS-F-SS-F  sinh&b sind;b {83[A% — a2 (1 —v)I* Yo (y) = -—(cosh 82b — cos 81b) A* — o (1 — v)?]
- —82[A% 4+ o (1 — 1Y) {81 [A* + @ (1 — v)] sinhdyy
—2818[A* — a (1 — v)*1? (cosh &b cosd b — 1) =0  +5; [A\* - a,%,u —v)] sind;y} + {8; [A? + &2 (1 — v)1? sinh &b
—8 [\ — a2 (1 — v)]? sin§;pH{[A? — a2, (1 — v)] cosh &y
+[A2 + % (1 — v)] cos 81y}

4 SS-C-SS5-SS  §r coshé2b sindyb — 4; sinhdrb coséb =0 Y,(y) = sind1b sinhd,y — sinhdb sindyy

5  SS-F-SS-SS  8[A% — e (1 — v))* coshérb sindib Y, (y) = [A2 — @2 (1 — v)] sind;b sinh &,y
~81[A2 + a2 (1 — v)J?sinh &b cos$1b =0 +[A% 402, (1 — v)] sinh &b sind;y

6  SS-F-SS-C 818 A — ot (1 =)+ 81860* + o (1—1)?] Ya(y) = {[A% + &2 (1 — v)] coshdb + [A* — a2 (1 — v)] cos §,b}
-cosh8yb cosd;b + a2 [A4(1 — 2v) — ok (1 — v)?] -(82sind1y — 81 sinh 8,y) + {81[A% + &2 (1 — v)] sinh &b
-sinh 826 siné b =0 +8,[A% — &2, (1 — v)] siné;b} (coshdyy — cos8;y)

Saurce: Refs, [1] and [2].
¢ Edges x = 0 and x = a simply supported.
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Vibrations of Rectangular Plates

Exact characteristic equations for some of classical boundary
conditions of vibrating moderately thick rectangular plates

Shahrokh Hosseini Hashemi and M. Arsanjani ,International Journal of Solids

and Structures Volume 42, Issues 3-4, February 2005, Pages 819-853

Exact solution for linear buckling of rectangular Mindlin plates

Shahrokh Hosseini-Hashemi, Korosh Khorshidi, and Marco Amabili, Journal of

Sound and Vibration Volume 315, Issues 1-2, 5 August 2008, Pages 318-342

School of Mechanical Engineering
Iran University of Science and Technology



FORCED VIBRATION OF
RECTANGULAR PLATES

w(x Y, t) = Z Z Wmn(x )’)ﬂmn(f)

m=1 n=1 \

the normal modes

a pb
f f ohW?: dxdy =1
0 J0



FORCED VIBRATION OF
RECTANGULAR PLATES

Using a modal analysis procedure:

Hn(2) + @2 Nmn(®) = Ny (1),  m,n=1,2,...

a pb
Nmn(t) =/{; ﬁ Wmn(xay)f(xsyat)dXdy

Nmn(0) .
51
Wmn

Omn{t) = Nmn(0) COS Wyut N Wyt

| ' {
0




FORCED VIBRATION OF
RECTANGULAR PLATES

The response of simply supported rectangular

: . mrx . nm
plates. Win(x,¥) = Aymn SID sin by’ mn=12,...
a
o0 o0 . D 2 2
w(x,y,t) = mglgﬂmn(m sin m;rx sm%)—)cos |:JT2 /;’-1- (—22—2 + g?) t]
1 S & im0 (o) 72 1 _ max . nmy
t L2 oy R .
Aimn = 2//phab

.| 2| D (m2 n?
Z(D)l/zl:mz " sin | 7 -p—h Ez—+b—2)t
Cl)mn = — (_) + (—-) ] o0 0 1/2 f
ph a b 3y (oh) 1 2™ ™ [N @

sin
n2DV2 m?/a? + n?/b? a b Jo

m=1n=1

D (m?> n?
: 2
sin l:n' ;I; (? + Ez—) (t - r)] dr
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Free Vibration of Continuous Systems

> Free Axial and Torsional Vibration
> Free Transverse Vibration of Bernoulli-Euler Beams

> Rayleigh's Method for Approximating the
Fundamental Frequency of a Continuous System

> Free Transverse Vibration of Beams Including
Shear Deformation and Rotatory Inertia

>Some Properties of Natural Modes of Continuous
Systems

> Free Vibration of Thin Flat Plates
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