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The Science and Art of Structural
Dynamics
What do all the followings have in common?
> A sport-utility vehicle traveling off-road, 
> An airplane flying near a thunderstorm,
> An offshore oil platform in rough seas, and
> An office tower during an earthquake.

All these structures are subjected to dynamic loading, 
that is, to time-varying loading.

Safety, performance, and reliability of structures led to 
the need for extensive analysis and testing to determine 
their response to dynamic loading.
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The Science and Art of Structural
Dynamics

Although the topic of this course, as indicated by 
its title, is structural dynamics, some courses 
with the word vibrations in their title discuss 
essentially the same subject matter. 

Powerful computer programs are invariably used to 
implement the modeling, analysis, and testing 
tasks that are discussed in this course, 
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The Science and Art of Structural
Dynamics
The application is in aerospace 
engineering, civil engineering, mechanical 
engineering, electrical engineering, or 
even in sports or music.
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INTRODUCTION TO STRUCTURAL 
DYNAMICS

By studying the principles and mathematical 
formulations discussed in this course you will 
begin to understand the science of structural 
dynamics analysis. 

However, structural dynamicists must also master 
the art of creating mathematical models of 
structures, and in many cases they must also 
perform dynamic tests.
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INTRODUCTION TO STRUCTURAL 
DYNAMICS
A dynamic -load is one whose magnitude, direction, or 
point of application varies with time. 

The resulting time-varying displacements and stresses 
constitute the dynamic response. 
If the loading is a known function of time, the analysis of 
a given structural system to a known loading is called a 
deterministic analysis. 
If the time history of the loading is not known completely 
but only in a statistical sense, the loading is said to be 
random.
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INTRODUCTION TO STRUCTURAL 
DYNAMICS
A structural dynamics problem differs from the 
corresponding static problem in two important 
respects:
> The time-varying nature of the excitation. 
> The role played by acceleration. 

If the inertia force contributes significantly to the 
deflection of the structure and the internal 
stresses in the structure, a dynamical 
investigation is required.
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Steps in a Dynamical Investigation
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MODELING OF STRUCTURAL 
COMPONENTS AND SYSTEMS
Perhaps the most demanding step in 

any dynamical analysis is the 
creation of a mathematical model 
of the structure.

This analytical model consists of:
1. A list of the simplifying 

assumptions made in reducing 
the real system to the analytical 
model

2. Drawings that depict the 
analytical model 

3. A list of the design parameters 
(i.e., sizes, materials, etc.)

Analytical models fall into two basic 
categories: continuous models
and discrete parameter models.
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MODELING OF STRUCTURAL 
COMPONENTS AND SYSTEMS
To create a useful analytical model, you must have 
clearly in mind the intended use of the analytical model, 
that is; the types of behavior of the real system that the 
model is supposed to represent faithfully. 
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MODELING OF STRUCTURAL 
COMPONENTS AND SYSTEMS

The complexity of the analytical model is 
determined by:

(1) the types and detail of behavior that it must 
represent, 

(2) the computational analysis capability available 
(hardware and software), and 

(3) the time and expense allowable.
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MODELING OF STRUCTURAL 
COMPONENTS AND SYSTEMS
30-DOF beam-rod model 
> preliminary studies and to 

determine full-scale testing 
requirements. 

The 300-DOF model
> a more accurate description 

of motion at the flight sensor 
locations.

Simplicity of the analytical 
model is very desirable as 
long as the model is adequate 
to represent the necessary 
behavior.
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MODELING OF STRUCTURAL 
COMPONENTS AND SYSTEMS

Once you have created an analytical model, 
you can apply physical laws' to obtain the 
differential equation(s) of motion that describe, 
in mathematical language, the analytical model.
> A continuous model leads to partial differential 

equations, whereas a
> discrete-parameter model leads to ordinary 

differential equations.
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MODELING OF STRUCTURAL 
COMPONENTS AND SYSTEMS

In using a finite element computer 
program, your major modeling task will 
be to simplify the system and provide 
input data on dimensions, material 
properties, loads, and so on.

This is where the "art" of structural 
dynamics comes into play. 

On the other hand, actual creation and 
solution of the differential equations is 
done by the computer program.
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VIBRATION TESTING OF 
STRUCTURES
A primary purpose of dynamical testing is to: 
> confirm a mathematical model and, 
> to obtain important information on loads, on 

damping, and on other parameters that may be 
required in the dynamical analysis.

In some instances these tests are conducted on 
reduced-scale physical models

In other cases, when a full-scale structure is 
available, the tests may be conducted on it.
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VIBRATION TESTING OF 
STRUCTURES
Aerospace vehicles must be 
subjected to extensive static 
and dynamic testing 
(ground vibration test )on 
the ground prior to actual 
flight of the vehicle. 
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VIBRATION TESTING OF 
STRUCTURES
An introduction to Experimental Modal Analysis is provided. 
> A very important structural dynamics test procedure that 

is used extensively in the automotive and aerospace 
industries and is also used to test buildings, bridges, and 
other civil structures.
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SCOPE OF THE COURSE

MULTI-DEGREE-OF-FREEDOM SYSTEMS
> Mathematical Models of MDOF Systems
> Vibration Properties of MDOF Systems: Modes, Frequencies, and 

Damping
> Dynamic Response of MDOF Systems: Mode-Superposition Method

DISTRIBUTED-PARAMETER SYSTEMS
> Mathematical Models of Continuous Systems
> Free Vibration of Continuous Systems
> Analysis of Dynamic Response
> Component-Mode Synthesis

Advanced Topics in Structural Dynamics
> Introduction to Experimental Modal Analysis
> Stochastic Response of Linear MDOF Systems 



School of Mechanical Engineering
Iran University of Science and Technology

Text and Evaluation Scheme

Textbook:
> Fundamentals of Structural Dynamics     

Roy R. Craig, Jr., and Andrew J. Kurdila   
2nd Edition, John Wiley & Sons, 2006.

Evaluation Scheme:
> Three quizzes   30%
> Course project  30%
> Final exam        40%
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COURSE PROJECT: Rotor dynamic 
analysis of gas turbine rotor
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Structural Dynamics
Leacture Two: Mathematical Models of MDOF Systems (Chapter 8) 
By: H. Ahmadian
ahmadian@iust.ac.ir
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Mathematical Models of MDOF Systems

The general form of the equations of motion of a linear N 
-DOF model of a structure is:

where M is the mass matrix, C is the viscous damping 
matrix, and K is the stiffness matrix. 
These coefficient matrices are all N x N matrices. 

The displacement vector u(t), either physical or 
generalized displacements, and the corresponding load 
vector p(t) are N x 1 vectors.
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APPLICATION OF NEWTON'S LAWS
TO LUMPED-PARAMETER MODELS

Use Newton's Laws to derive the equations of motion of 
the system shown in Fig. 1. Express the equations of 
motion in terms of the displacements of the masses 
relative to the base.
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APPLICATION OF NEWTON'S LAWS
TO LUMPED-PARAMETER MODELS
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APPLICATION OF NEWTON'S LAWS
TO LUMPED-PARAMETER MODELS

The motion of a mobile launcher subjected to base 
excitation is to be studied by using the lumped-parameter 
model shown. Use Newton's Laws to derive the equations 
of motion of this system. 
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APPLICATION OF NEWTON'S LAWS
TO LUMPED-PARAMETER MODELS
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INTRODUCTION TO ANALYTICAL 
DYNAMICS: HAMILTON'S PRINCIPLE AND 
LAGRANGE'S EQUATIONS
The study of dynamics may be subdivided into two main 
categories: 
> Newtonian Mechanics and 
> Analytical Mechanics /referred to as Variational 

Principles in Mechanics or Energy Methods in 
Mechanics

The Principle of Virtual Displacements, Hamilton's 
Principle, and Lagrange's Equations are analytical 
mechanics methods that are used to derive the equations 
of motion for various models of dynamical systems.
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Hamilton's Principle

The Extended Hamilton's Principle may be 
stated as follows:

The motion of the given system from time t1, to t2
is such that:
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Hamilton's Principle

For conservative systems

is called the Lagrangian function. The 
above equation is referred to as Hamilton's 
Principle.
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Lagrange's Equations

Generalized coordinates are defined as any set of N 
independent quantities that are sufficient to completely 
specify the position of every point within an N –DOF 
system.

where P1 P2, .... PN are called the generalized forces.
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Lagrange's Equations

A particle of mass m
slides along a 
weightless rigid rod 
as shown. Write an 
expression for the 
kinetic energy of the 
particle in terms of 
the generalized 
coordinates q1 and q2
and their time 
derivatives.
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Lagrange's Equations

A force P acts tangent 
to the path of a particle 
of weight W, which is 
attached to a rigid bar 
of length L. Obtain 
expressions for the 
potential energy of 
weight Wand the virtual 
work done by force P. 
Also, determine an 
expression for the 
generalized force.
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Lagrange's Equations
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APPLICATION OF LAGRANGE'S 
EQUATIONS TO LUMPED-PARAMETER 
MODELS
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Structural Dynamics
Leacture Three: Mathematical Models of MDOF Systems (Chapter 8) 
By: H. Ahmadian
ahmadian@iust.ac.ir
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APPLICATION OF LAGRANGE'S 
EQUATIONS   TO CONTINUOUS MODELS

ASSUMED-MODES METHOD
Selection of Shape Functions
Cantilever Beam Example
Axial vibration of a linearly elastic bar

Procedure for the Assumed-Modes Method
A 2-DOF model for axial vibration of a uniform 

cantilever bar
Assumed-Modes Method: Bending of Bernoulli-

Euler Beams
A missile on launch pad
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APPLICATION OF LAGRANGE'S 
EQUATIONS TO CONTINUOUS MODELS: 
ASSUMED-MODES METHOD

To generate an N DOF model of a continuous 
system, the continuous displacement u(x,t) is 
approximated by the finite sum:
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Selection of Shape Functions

The shape functions must:
> Form a linearly independent set.
> Possess derivatives up to the order appearing 

in the strain energy V.
> Satisfy all prescribed boundary conditions, 

that is, all displacement-type boundary 
conditions.

Functions that satisfy these three conditions are 
called admissible functions.
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Cantilever Beam Example

Since the strain energy for a Bernoulli-Euler 
beam contains the second derivative of the 
transverse displacement, assumed modes 
must be continuous functions of x, and its first 
derivative.
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Axial vibration of a linearly elastic bar



School of Mechanical Engineering
Iran University of Science and Technology

Axial vibration of a linearly elastic bar
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Procedure for the Assumed-Modes 
Method

1. Select a set of N admissible functions.
2. Compute the coefficients kij of the stiffness 

matrix. 

3. Compute the coefficients mij of the mass matrix 

4. Determine expressions for the generalized 
forces Pi(t) corresponding to the applied force 
p(x,t).

5. Form the equations of motion.
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A 2-DOF model for axial vibration of a 
uniform cantilever bar
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A 2-DOF model for axial vibration of a 
uniform cantilever bar
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Assumed-Modes Method: Bending of 
Bernoulli-Euler Beams



School of Mechanical Engineering
Iran University of Science and Technology

A missile on launch pad
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A missile on launch pad
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Structural Dynamics
Lecture Four: Mathematical Models of MDOF Systems (Chapter 8) 
By: H. Ahmadian
ahmadian@iust.ac.ir
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SUMMERY
Application of Lagrange’s Equations to continuous 
models: 
> ASSUMED-MODES METHOD

To generate an N DOF model of a continuous 
system, the continuous displacement u(x,t) is 
approximated by the finite sum:
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Axial vibration of a linearly elastic bar
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Axial vibration of a linearly elastic bar
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Assumed-Modes Method: Bending of 
Bernoulli-Euler Beams
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Other Effects: Distributed Viscous Damping



School of Mechanical Engineering
Iran University of Science and Technology

Other Effects: Geometric Stiffness
In a situation where a member is subjected to 
axial loading and also undergoes transverse 
deflection, the axial load may have a significant 
effect on the bending stiffness of the member.
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Other Effects: Geometric Stiffness
Using the virtual work done by the compressive 
axial force, N(x), the generalized geometric 
stiffness coefficient kG is obtained:
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Other Effects: Geometric Stiffness
Assume that the element 
AB of length dx remains dx 
in length but rotates to the 
position A*B* due to the 
transverse deflection:
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Other Effects: Geometric Stiffness
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CONSTRAINED COORDINATES AND 
LAGRANGE MULTIPLIERS

Occasionally, it is desirable to employ a set of 
coordinates that are not independent. 
Let these be denoted by g1, g2,... , gM, where M > N 
and associated C = M - N constraint equations. 
Let these constraint equations be written in the form
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CONSTRAINED COORDINATES
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CONSTRAINED COORDINATES

Since the 8g's are not independent, we cannot 
just set the expression in brackets to zero.
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CONSTRAINED COORDINATES

We can choose the Lagrange multipliers so as to make 
the bracketed expressions for i = 1, 2,.... ,C equal to zero.

Thus, the bracketed expression must vanish for all og,' 
giving the following Lagrange's Equations modified for 
constrained coordinates:
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Alternative Lagrange's Equations
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Example:
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Example:
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Structural Dynamics
Lecture Five: Vibration of Undamped 2-DOF Systems (Chapter 9) 
By: H. Ahmadian
ahmadian@iust.ac.ir
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Vibration of Undamped 2-DOFSystems

1. The natural frequencies and natural modes of a 
system.

2. Expressions for the response to initial conditions.  
The beat phenomenon.

3. The natural frequencies/natural modes of systems.

4. The modal matrix, the modal stiffness matrix, and the 
modal mass matrix.

5. Expressions for the steady-state frequency response 
in principal coordinates and in physical coordinates.

> An undamped vibration absorber.
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FREE VIBRATION : NATURAL
FREQUENCIES AND MODE SHAPES
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BEAT PHENOMENON

(a) Obtain the natural frequencies and mode shapes of the system. 
(b) Determine expressions for the motion of the two masses given the initial 
conditions.
(c) Let system parameters k, k', and m be such that f1 = 5.0 Hz and f2 = 5.5 Hz and 
let the initial displacement be u0 = 1. Plot the respective responses of the two 
masses.
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Solution: Natural Frequencies and Mode 
Shapes

and let
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Solution: Natural Frequencies and Mode 
Shapes

Symmetric mode
Antisymmetric mode,
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Solution: Free Vibration Response
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Solution: Frequency Assignment



School of Mechanical Engineering
Iran University of Science and Technology

FREE VIBRATION OF SYSTEMS WITH 
RIGID-BODY MODES

Rigid-body modes have a corresponding natural 
frequency of zero (semidefinite eigenvalue problem).

(a ) mode I: translation (plunge) rigid-
body mode; 
(b) mode 2: rotation (roll) rigid-body 
mode; 
(c) mode 3: flexible mode.
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FREE VIBRATION OF SYSTEMS WITH 
RIGID-BODY MODES
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INTRODUCTION TO MODE SUPERPOSITION: 
FREQUENCY RESPONSE

This section considers the response of a system 
to harmonic excitation. 

And provide an introduction to the mode-
superposition method for solving for the dynamic 
response of MDOF systems.
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Response to Harmonic Excitation
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Response to Harmonic Excitation
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Response to Harmonic Excitation
(modal response)
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Response to Harmonic Excitation
(Physical coordinates response)
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UNDAMPED VIBRATION ABSORBER
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UNDAMPED VIBRATION ABSORBER
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Vibration of Undamped 2-DOFSystems

The natural frequencies and natural modes of a system.

Expressions for the response to initial conditions.
> The beat phenomenon.

The natural frequencies/natural modes of systems.

The modal matrix, the modal stiffness matrix, and the 
modal mass matrix.

Expressions for the steady-state frequency response in 
principal coordinates and in physical coordinates.
> An undamped vibration absorber.
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Structural Dynamics
Lecture Six: Vibration Properties of MDOF Systems (Chapter 10) 
By: H. Ahmadian
ahmadian@iust.ac.ir
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Vibration Properties of MDOF Systems: 
Modes, Frequencies, and Damping

1. Some Properties of Natural Frequencies and Natural 
Modes of Undamped MDOF Systems 

2. Model Reduction: Rayleigh, Rayleigh-Ritz, and 
Assumed-Modes Methods 

3. Uncoupled Damping in MDOF Systems

4. Structures with Arbitrary Viscous Damping: Complex 
Modes 

5. Natural Frequencies and Mode Shapes of Damped 
Structures with Rigid-Body Modes
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Properties of K and M
Stiffness matrix K and mass matrix M are related to strain 
energy and kinetic energy by the quadratic forms:

For most structures K and M are positive definite matrices
– For any arbitrary displacement of a system with positive 

definite K from its undeformed configuration, the strain 
energy will be positive.

– For any arbitrary velocity distribution of a system with 
positive definite M, a positive kinetic energy will result.
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Exceptions
K of systems that have rigid-body freedom: 

– K is said to be positive semidefinite, 
– Strain energy can be either zero (for rigid-body 

motion) or greater than zero (for motion 
resulting in deformation) 

– K is a singular matrix.

M of systems with degrees of freedom that have 
no associated inertia:
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Eigensolution

Characteristic equation



School of Mechanical Engineering
Iran University of Science and Technology

Scaling (Normalizing) the Modes
If the value of one of the N elements of a natural mode 
vector Ur is assigned a specified value, the remaining N -
1 elements are determined uniquely. 

– Thus, we say that the mode shape is determined 
uniquely, but not the mode's amplitude. 

There are three commonly employed procedures for 
normalizing modes:

– Scale the rth mode so that              at a specified 
coordinate i.

– Scale the rth mode so that the maximum displacement is 
unity.

– Scale the rth mode so that its generalized mass, or 
modal mass,                is unity.
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Mode Shapes: Distinct Frequencies
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Orthogonality



School of Mechanical Engineering
Iran University of Science and Technology

Mode Shapes: Repeated Frequencies
If the eigenvalue is repeated p times, there will be 
p linearly independent eigenvectors associated 
with this repeated eigenvalue.
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Example:
(a) Solve for the three natural frequencies of this system.

(b) Solve for the three normal modes of the system. 

(c) Evaluate the orthogonality relationships.
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Natural Frequencies:
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Normal Modes:
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Normal Modes:
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Orthogonality Relationships:
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Orthogonality Relationships:

It is possible to use a set of p linearly independent 
modes to create a set of p modes that are 
orthogonal (Gram-Schmidt Procedure):
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Modal Matrix and Eigenvalue Matrix

Generalized Mass Stiffness Matrices
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Mode Superposition Employing Modes 
of the Undamped Structure



School of Mechanical Engineering
Iran University of Science and Technology

Structural Dynamics
Lecture Seven: Vibration Properties of MDOF Systems (Chapter 10) 
By: H. Ahmadian
ahmadian@iust.ac.ir
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Vibration Properties of MDOF Systems: 
Modes, Frequencies, and Damping

1. Some Properties of Natural Frequencies and Natural 
Modes of Undamped MDOF Systems

2. Model Reduction: Rayleigh, Rayleigh-Ritz, and 
Assumed-Modes Methods 

3. Uncoupled Damping in MDOF Systems 

4. Structures with Arbitrary Viscous Damping: Complex 
Modes 

5. Natural Frequencies and Mode Shapes of Damped 
Structures with Rigid-Body Modes
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Rayleigh Quotient
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Rayleigh Quotient
Error Analysis
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Example:
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Example:

Exact solution
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Rayleigh-Ritz Method for MDOF 
Systems

Preselected linearly independent assumed-mode vectors.
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Rayleigh-Ritz Method for MDOF 
Systems

Ritz proposal: the coefficients    be chosen to 
make          stationary:
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Assumed-Modes Method for Model 
Reduction of MDOF Systems
The Rayleigh-Ritz procedure is a model order-reduction 
method that applies specifically to free vibration. 

This method can be considered to be special case of 
applying the Assumed-Modes Method to reduce an N-
DOF system to a    -DOF system by assuming that:
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Eigenvalue Separation Property

obtained by deleting the last m rows and columns of K and M
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Eigenvalue Separation Property
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Eigenvalue Separation Property
The eigenvalue separation theorem can be 

employed directly to show the convergence 
properties of frequencies obtained by the 
Rayleigh-Ritz method. 
Each of the    < N eigenvalues produced by a 

Rayleigh-Ritz approximation to an N -DOF 
system is an upper bound to the corresponding 
exact eigenvalue, 
The eigenvalues approach the exact values 

from above as the number of degrees of 
freedom, N increases.
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Eigenvalue Separation Property



School of Mechanical Engineering
Iran University of Science and Technology

UNCOUPLED DAMPING IN MDOF 
SYSTEMS

Equation of motion in principal coordinates:

The generalized damping matrix is 
not diagonal.
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UNCOUPLED DAMPING IN MDOF 
SYSTEMS: Raleigh Damping
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UNCOUPLED DAMPING IN MDOF 
SYSTEMS: Modal Damping

Typical values lie in the range 0.01 ::::~r :::: 0.1.
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Damping Matrix C in Physical 
Coordinates

There will be no damping of those modes for 
which its damping ratio is set to zero.
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Damping Matrix C for Augmented Modal 
Damping
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UNCOUPLED DAMPING IN MDOF 
SYSTEMS
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UNCOUPLED DAMPING IN MDOF 
SYSTEMS
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UNCOUPLED DAMPING IN MDOF 
SYSTEMS
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Structural Dynamics
Lecture Eight: Vibration Properties of MDOF Systems (Chapter 10) 
By: H. Ahmadian
ahmadian@iust.ac.ir
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Vibration Properties of MDOF Systems: 
Modes, Frequencies, and Damping

1. Some Properties of Natural Frequencies and Natural 
Modes of Undamped MDOF Systems

2. Model Reduction: Rayleigh, Rayleigh-Ritz, and 
Assumed-Modes Methods 

3. Uncoupled Damping in MDOF Systems 

4. Structures with Arbitrary Viscous Damping: Complex 
Modes

5. Natural Frequencies and Mode Shapes of Damped 
Structures with Rigid-Body Modes
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STRUCTURES WITH ARBITRARY VISCOUS 
DAMPING: COMPLEX MODES

Equation of motion in principal coordinates:

The generalized damping matrix is 
not diagonal.
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State-Space Form of the Equations of 
Motion
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State-Space Eigenvalue Problem
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State-Space Eigenvalue Problem

The coefficient matrices are real, the 2N 
eigenvalues must either be:
 Real
very high damping leading to overdamped 

modes
 Occur in complex conjugate pairs, 
most structures will have N complex conjugate 

pairs of eigenvalues and corresponding 
complex conjugate eigenvectors.
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Orthogonality Equations for Complex 
Modes
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Orthogonality Equations for Complex 
Modes
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Interpretation of State-Space Eigenvalues

Natural Frequency Damping Factor
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Interpretation of State-Space Eigenvectors: 
Scaling and Rotating of Complex Eigenvectors

The following example gives a physical feeling 
for the results of state-vector eigensolutions.

The eigensolution can be expressed in terms 
of real and imaginary parts by:
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Interpretation of State-Space Eigenvectors: 
Scaling and Rotating of Complex Eigenvectors
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(a) Undamped system

Observations:
 The eigenvalues are pure imaginary; there is no damping.

 Elements of eigenvector are in phase or out of phase with each other.
The combination of the two complex-conjugate eigenvectors leads  to 

the real motion of the symmetric mode.
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(a) Undamped system
Let us add the top parts of the third and fourth 
eigenvectors as follows:

This illustrates why complex eigenvectors must 
occur in complex-conjugate pairs.
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(b) System with M-proportional damping
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(c) Local damping with C3 = 20.
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(c) Local damping with C3 = 20.
Observations:
 In this underdamped system with nonproportional damping, the 

eigenvalues and eigenvectors occur in two complex-conjugate pairs.
 The natural frequencies are not exactly the same as the natural 

frequencies of the undamped system 
 However, since this is a fairly lightly damped system, the natural 

frequencies are close to the respective undamped natural 
frequencies.

 It has complex mode shapes.



School of Mechanical Engineering
Iran University of Science and Technology

(d) Overdamped system with local 
damping with C3 = 200.
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(d) Overdamped system with local 
damping with C3 = 200.

Observations:
There are two large negative real eigenvalues; the 

system is overdamped to the extent that there is only 
one pair of complex conjugate eigenvalues and 
associated eigenvectors.
The natural frequencies are not exactly the same as 

natural frequencies
of the undamped system.
As can be seen from the eigenvectors (displacement 

part), the masses are not in phase or 1800 out of 
phase. And since this system is heavily damped, it has 
"very“ complex modes.
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Structural Dynamics
Lecture Nine: Vibration Properties of MDOF Systems (Chapter 10) 
By: H. Ahmadian
ahmadian@iust.ac.ir
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Vibration Properties of MDOF Systems: 
Modes, Frequencies, and Damping

1. Some Properties of Natural Frequencies and Natural 
Modes of Undamped MDOF Systems

2. Model Reduction: Rayleigh, Rayleigh-Ritz, and 
Assumed-Modes Methods 

3. Uncoupled Damping in MDOF Systems 

4. Structures with Arbitrary Viscous Damping: Complex 
Modes 

5. Natural Frequencies and Mode Shapes of Damped 
Structures with Rigid-Body Modes
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NATURAL FREQUENCIES AND MODE 
SHAPES OF DAMPED STRUCTURES WITH 
RIGID-BODY MODES

Special treatment is required in determining the 
state eigenvectors of systems that have rigid-
body modes. 
It is necessary to incorporate generalized 

eigenvectors and the Jordan form of the 
eigenvalue matrix.
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Generalized Eigenvectors: Jordan Form

An NxN matrix D is called defective when it fails 
to have a linearly independent set of N 
eigenvectors (e.g. has a repeated eigenvalues).
It is then not possible to transform D into 

diagonal form;

Using a linearly independent set of generalized 
eigenvectors D is transformed into block-
diagonal Jordan form
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Generalized Eigenvectors: Jordan Form

The repeated eigenvalues lead to Jordan blocks 
having the eigenvalue on the diagonal and ones 
on the superdiagonal.
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Undamped Systems with Rigid-Body 
Modes
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Undamped Systems with Rigid-Body 
Modes

There are only Nr rigid body modes.
Zero eigenvalues must occur with multiplicity 2Nr
The generalized eigenproblem is defective.
For each regular state rigid-body mode, there will 

be a corresponding generalized state rigid-body 
mode
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Generalized State Rigid-Body Mode
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Generalized State Rigid-Body Mode

The regular state rigid-body mode contains the 
displacement representation, it is sufficient to set



School of Mechanical Engineering
Iran University of Science and Technology

Generalized State Rigid-Body Mode

The complete set of state rigid-body modes for an 
undamped system is given by:
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Example
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Example

The rank of             is 3, there will only be one 
regular state eigenvector given by:
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Viscous-Damped Systems with Rigid-
Body Modes

Depends on C
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Viscous-Damped Systems with Rigid-
Body Modes

If any of the columns of         , are zero, there 
will be a solution for the corresponding column 
of          just as for the undamped case.
For those columns of        , that are not zero, 

there will not be a solution for the 
corresponding columns of  
Hence, the assumption that        is a double 

root leading to both regular and generalized 
state rigid-body modes is not valid.
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Example

Determine the eigenvectors corresponding to 
zero eigenvalues.
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(a) Case for which
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(b) Case for which

The rigid-body displacement mode is the same 
as for previous case

No generalized eigenvector corresponding to
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Structural Dynamics
Lecture Ten: Dynamic Response of MDOF Systems: (Chapter 11) 
By: H. Ahmadian
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Dynamic Response of MDOF Systems: 
Mode-Superposition Method
Mode-Superposition Method: Principal Coordinates 
Mode-Superposition Solutions for MDOF Systems with 

Modal Damping: Frequency-Response Analysis
Mode-Displacement Solution for the Response of 

MDOF Systems
Mode-Acceleration Solution for the Response of 

Undamped MDOF Systems 
Dynamic Stresses by Mode Superposition
Mode Superposition for Undamped Systems with 

Rigid-Body Modes
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MODE-SUPERPOSITION METHOD: 
PRINCIPAL COORDINATES
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Modal Damping: Uncoupled Equations of 
Motion

Initial Conditions in Modal Coordinates



School of Mechanical Engineering
Iran University of Science and Technology

Mode-Superposition Solution for Free 
Vibration of an Undamped MDOF System
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Example: The free vibration response of 
a 2-DOF system
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Example: The free vibration response …
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MODE-SUPERPOSITION SOLUTIONS FOR 
MDOF SYSTEMS WITH MODAL DAMPING: 
FREQUENCY-RESPONSE ANALYSIS
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MODE-SUPERPOSITION SOLUTIONS FOR 
MDOF SYSTEMS WITH MODAL DAMPING: 
FREQUENCY-RESPONSE ANALYSIS
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Example:

Determine the system's modes
Determine the modal mass/stiffness/damping
Determine the complex frequency-response 

functions
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Example: the system's modes
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Example: the modal properties



School of Mechanical Engineering
Iran University of Science and Technology

Example: frequency-response functions
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Example: frequency-response functions



School of Mechanical Engineering
Iran University of Science and Technology

Example: frequency-response functions



School of Mechanical Engineering
Iran University of Science and Technology

Example: frequency-response functions
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Example:

Repeat the same example with the new set of 
parameters. (Note: These parameters were 
chosen to give 1% damping and to give natural 
frequencies separated by only 1%.)
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Example: the system's modal properties
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Example: frequency-response functions
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Example: frequency-response functions
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Dynamic Response of MDOF Systems: 
Mode-Superposition Method
Mode-Superposition Method: Principal Coordinates 
Mode-Superposition Solutions for MDOF Systems with 

Modal Damping: Frequency-Response Analysis
Mode-Displacement Solution for the Response of 

MDOF Systems
Mode-Acceleration Solution for the Response of 

Undamped MDOF Systems 
Dynamic Stresses by Mode Superposition
Mode Superposition for Undamped Systems with 

Rigid-Body Modes
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