Structural Dynamics

A Graduate Course in Aerospace Engineering

By: H. Ahmadian

ahmadian@iust.ac.ir

Experimental
Modal
Finite Analysis
Element Eadain
Modelling {551

Dynamics

School of Mechanical Engineering
Iran University of Science and Technology



The Science and Art of Structural

Dynamics
What do all the followings have in common?

> A sport-utility vehicle traveling off-road,

> An airplane flying near a thunderstorm,

> An offshore oll platform in rough seas, and
> An office tower during an earthquake.

All these structures are subjected to dynamic loading,
that is, to time-varying loading.

Safety, performance, and reliability of structures led to
the need for extensive analysis and testing to determine
their response to dynamic loading.
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The Science and Art of Structural
Dynamics

Although the topic of this course, as indicated by
its title, is structural dynamics, some courses
with the word vibrations in their title discuss
essentially the same subject matter.

Powerful computer programs are invariably used to
Implement the modeling, analysis, and testing
tasks that are discussed In this course,
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The Science and Art of Structural
Dynamics

The application is in aerospace
engineering, civil engineering, mechanic
engineering, electrical engineering, or
even in sports or music.

School of Mechanical Engineering
Iran University of Science and Technology



INTRODUCTION TO STRUCTURAL
DYNAMICS

By studying the principles and mathematical
formulations discussed in this course you will
begin to understand the science of structural
dynamics analysis.

However, structural dynamicists must also master
the art of creating mathematical models of
structures, and in many cases they must also
perform dynamic tests.
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INTRODUCTION TO STRUCTURAL
DYNAMICS

A dynamic -load is one whose magnitude, direction, or
point of application varies with time.

The resulting time-varying displacements and stresses
constitute the dynamic response.

If the /oading is a known function of time, the analysis of
a given structural system to a known loading is called a
deterministic analysis.

If the frme history of the loading is not known completely

but only in a statistical sense, the loading is said to be
random.
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INTRODUCTION TO STRUCTURAL
DYNAMICS

A structural dynamics problem differs from the
corresponding static problem in two important
respects:

> The time-varying nature of the excitation.
> The role played by acceleration.

If the Inertia force contributes significantly to the
deflection of the structure and the internal
stresses In the structure, a dynamical
Investigation Is required.
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Steps in a Dynamical Investigation
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MODELING OF STRUCTURAL
COMPONENTS AND SYSTEMS

Perhaps the most demanding step in
any dynamical analysis Is the
creation of a mathematical mode/
of the structure.

This analytical model consists of:

1. Alist of the simplifying _
assumptions made in reducing
the real system to the analytical
model

2. Drawings that depict the
analytical model ®

3. Alist of the design parameters
(i.e., sizes, materials, etc.)

Analytical models fall into two basic
categories: continuous models
and discrete parameter models.

PR

School of Mechanical Engineering
Iran University of Science and Technology



MODELING OF STRUCTURAL
COMPONENTS AND SYSTEMS

To create a useful analytical model, you must have
clearly in mind the intended use of the analytical model,
that is; the types of behavior of the real system that the
model is supposed to represent faithfully.

5 : 3 | O F g E
: : g :
Py SN S R %
a i 'iE T m | ;
B
i

' . E.\\"_-l_:-;lt r"ﬂr -
1 T NASA SP-8030 ‘

H
—_——
I

Simplified longitudinal dynamic model of space vehicle held to launch stand

Himpm 2

School of Mechanical Engineering
Iran University of Science and Technology



MODELING OF STRUCTURAL
COMPONENTS AND SYSTEMS

The complexity of the analytical model is
determined by:

(1) the types and detail of behavior that it must
represent,

(2) the computational analysis capabillity available
(hardware and software), and

(3) the time and expense allowable.
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MODELING OF STRUCTURAL
COMPONENTS AND SYSTEMS

120 DOF

3o DOF

30-DOF beam-rod model

> preliminary studies and to
determine full-scale testing
reguirements.

The 300-DOF model

> a more accurate description
of motion at the flight sensor
locations.

Simplicity of the analytical ‘
model is very desirable as

lllll
i

long as the model is adequate N
Fa
to represent the necessary Capolo Beamrod  Beam-od
behavior. Space M g
vehicle model
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MODELING OF STRUCTURAL
COMPONENTS AND SYSTEMS

Once you have created an analytical mode/,
you can apply physical laws' to obtain the
differential equation(s) of motion that describe,
In mathematical language, the analytical model.
> A continuous model leads to partial differential
equations, whereas a

> discrete-parameter model leads to ordinary
differential equations.
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MODELING OF STRUCTURAL
COMPONENTS AND SYSTEMS

In using a finite element computer
program, your major modeling task will
be to simplify the system and provide
iInput data on dimensions, material
properties, loads, and so on.

This Is where the "art" of structural
dynamics comes into play.

On the other hand, actual creation and
solution of the differential equations is
done by the computer program.
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VIBRATION TESTING OF
STRUCTURES

A primary purpose of dynamical testing Is to:
> confirm a mathematical model and,

> 1o obtain important information on loads, on
damping, and on other parameters that may be
required in the dynamical analysis.

In some Instances these tests are conducted on
reduced-scale physical models

In other cases, when a ful/-scale structure is
avallable, the tests may be conducted on It.
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VIBRATION TESTING OF
STRUCTURES

Aerospace vehicles must be
subjected to extensive static
and dynamic testing
(ground vibration test )on
the ground prior to actual
flight of the vehicle.
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VIBRATION TESTING OF
STRUCTURES

An introduction to Experimental Modal Analysis is provided.

> A very important structural dynamics test procedure that
IS used extensively in the automotive and aerospace
Industries and is also used to test buildings, bridges, and
other civil structures.
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SCOPE OF THE COURSE

MULTI-DEGREE-OF-FREEDOM SYSTEMS
> Mathematical Models of MDOF Systems

> Vibration Properties of MDOF Systems: Modes, Frequencies, and
Damping

> Dynamic Response of MDOF Systems: Mode-Superposition Method
DISTRIBUTED-PARAMETER SYSTEMS

> Mathematical Models of Continuous Systems

> Free Vibration of Continuous Systems

> Analysis of Dynamic Response

> Component-Mode Synthesis

Advanced Topics in Structural Dynamics
> |ntroduction to Experimental Modal Analysis
> Stochastic Response of Linear MDOF Systems
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Text and Evaluation Scheme

Textbook:

>Fundamentals of Structural Dynamics
Roy R. Cralg, Jr., and Andrew J. Kurdila
2nd Edition, John Wiley & Sons, 2006.

Evaluation Scheme:

>Three quizzes 30%
> Course project 30%
> Final exam 40%
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COURSE PROJECT: Rotor dynamic
analysis of gas turbine rotor
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Structural Dynamics

Leacture Two: Mathematical Models of MDOF Systems (Chapter 8)
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Mathematical Models of MDOF Systems

The general form of the equations of motion of a linear N/
-DOF model of a structure is:

Mid + Cu + Ku = pir)

where Mis the mass matrix, Cis the viscous damping
matrix, and K'is the stiffness matrix.

These coefficient matrices are all N x N matrices.

The displacement vector u(t), either physical or
generalized displacements, and the corresponding /oad
vector p(t) are N x 1 vectors.
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APPLICATION OF NEWTON'S LAWS
TO LUMPED-PARAMETER MODELS

Use Newton's Laws to derive the equations of motion of
the system shown in Fig. 1. Express the equations of
motion in terms of the displacements of the masses
relative to the base. (20

Figure 1 A 2-DOF spring-mass —dashpot system.
@
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APPLICATION OF NEWTON'S LAWS
TO LUMPED-PARAMETER MODELS

. m, “ ot my 53 R =miiy =my(i i) = —fi— fo
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APPLICATION OF NEWTON'S LAWS
TO LUMPED-PARAMETER MODELS

The motion of a mobile launcher subjected to base
excitation is to be studied by using the lumped-parameter
model shown. Use Newton's Laws to derive the equations

of motion of this system. T
-..a. o 75 gl 5
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APPLICATION OF NEWTON'S LAWS
TO LUMPED-PARAMETER MODELS
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NTRODUCTION TO ANALYTICAL
DYNAMICS: HAMILTON'S PRINCIPLE AND
_LAGRANGE'S EQUATIONS

The study of dynamics may be subdivided into two main
categories:

> Newtonian Mechanics and

> Analytical Mechanics feferred to as Variational

Principles in Mechanics or Energy Methods in
Mechanics

The Principle of Virtual Displacements, Hamilton's
Principle, and Lagrange's Equations are analytical
mechanics methods that are used to derive the equations
of motion for various models of dynamical systems.
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Hamilton's Principle

The Extended Hamilton's Princip/e may be
stated as follows:

The motion of the given system from time t,, to t,

IS such that: . p— |
f 5(T-V}d:+[ §W,edt =0
f

" |

i

T = total kinetic energy of the system .
V = potential energy of the system, including the strain energy and the potential

energy of conservative external forces

§W,. = virtual work done by nonconservative forces, including damping forces and
external forces not accounted for in V

8[-] = symbol denoting the first variation, or virtual change, in the quantity in
brackets

t,,t, = times at which the configuration of the system is assumed to be known
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Hamilton's Principle

For conservative systems §W,. =0,
2
f SLdr =0
]

L =T-V is called the Lagrangian function. The
above equation is referred to as Hamilton's
Principle.
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Lagrange's Equations

Generalized coordinates are defined as any set of NV
Independent guantities that are sufficient to completely
specify the position of every point within an N-DOF
system.

T= T(gh qZ& . --anaél! ‘?2! "'!éN&t)
y= V(g1,92,---,Gn, 1)
O Wpe = Pl‘sél + p26g, + -+ padgn

where P, P,, .... P, are called the generalized forces.
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Lagrange's Equations

A particle of mass m
slides along a
weightless rigid rod
as shown. Write an
expression for the
Kinetic energy of the
particle in terms of
the generalized
coordinates g, and g,

T=1m(y* + %)

Y = qC05q;

z = ¢, Sing;

¥y =g, C08q; — q21 sin g,
z = ¢, 5ing; + §2G; €08 q:

and their time T= %m’[fﬁ + fﬁ'lti'::]z]

derivatives.

School of Mechanical Engineering
Iran University of Science and Technology



Lagrange's Equations

.
A force Pacts tangent o
to the path of a particle

of weight W, which is
attached to a rigid bar

of length L. Obtain 91
expressions for the
potential energy of

weight Wand the virtual
work done by force P. 1w
Also, determine an
expression for the V=-Wy=-WLcosb | s\y, — Pss = (PL) 36
generalized force. g = PL

Y
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Lagrange's Equations

I3 !
f W, dr =01

iz
/ S(7T—V)dt +
n
AT d aT aT aT
— 4 —8g. + -+ —8gy + —8g, + —dg
-[l (3‘—?! ql+3 + a%q dq 8G:
a7 aV ay aV
—— - —34 gy — - — — 48
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— —4dg, dt

a—" {1', dt = —ﬁq dt aq

2 aT aT
i 9q,

T 2 d 0T
I f

8gi(t)) = 8q.(rn) =0

+ pidg, + pdg. +
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APPLICATION OF LAGRANGE'S
EQUATIONS TO LUMPED-PARAMETER

MODELS

T=2(}m57) + JMid
¥m = u+ L8

T=m(u + L6)* + I Mi?

V=2(3k06%)

d7T

2mL  2mlL?
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Structural Dynamics

Leacture Three: Mathematical Models of MDOF Systems (Chapter 8)
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APPLICATION OF LAGRANGE'S
EQUATIONS TO CONTINUOUS MODELS

JASSUMED-MODES METHOD
» Selection of Shape Functions
» Cantilever Beam Example
» Axial vibration of a linearly elastic bar

JProcedure for the Assumed-Modes Method

> A 2-DOF model for axial vibration of a uniform
cantilever bar

»Assumed-Modes Method: Bending of Bernoulli-
Euler Beams

» A missile on launch pad

School of Mechanical Engineering
Iran University of Science and Technology



APPLICATION OF LAGRANGE'S
EQUATIONS TO CONTINUOUS MODELS:
ASSUMED-MODES METHOD

To generate an NNDOF model of a continuous
system, the continuous displacement uy(x,t)is
approximated by the finite sum:

u(x, 1) = ) ¥, (x)q; 1)
i=1
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Selection of Shape Functions

The shape functions must:
> Form a linearly rndependent set.

> Possess derivatives up to the order appearing
In the strain energy V.

> Satisfy all prescribed boundary conditions,
that is, all displacement-type boundary
conditions.

Functions that satisfy these three conditions are
called admissible functions.
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Cantilever Beam Example

T ¥ v(x, 1)
py(x, 1)

N
v(x,1) = ) ¥, (x)g, (1)

=1

*x

2 0,0 = (0,0 =u(L,1)=0
. L @ =0 = Y, (L) =0

L

Since the strain energy for a Bernoulli-Euler
beam contains the second derivative of the
transverse displacement, assumed modes
must be continuous functions of x, and its first
derivative.
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Axial vibration of a linearly elastic bar
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Axial vibration of a linearly elastic bar

W = f plx,1)du(x, t)dx = ZF‘ (Ndu; Su(x,t) = Zw (x) Su,

=1 i=1

— |
p;(1) = f plx, Dy (x)dx |
D .

Em i +Z;:; =p M, i=12..N
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Procedure for the Assumed-Modes
Method

1. Select a set of N admissible functions.

2. Compute the coefficients & of the stiffness
matrix.

3. Compute the coefficients /m; of the mass matrix

4. Determine expressions for the generalized
forces P,(t) corresponding to the applied force

px ).
5. Form the equations of motion.

ﬂ
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A 2-DOF model for axial vibration of a
uniform cantilever bar

—> wn L R D) =Y )+ Yy () uy (1)
—t

‘ _l w@0,0=0 ——> Y0 =1,0)=0
X

A

L X e E
I'Erl (x) = I‘ 1#2'::1} - (E)
L .ly;rg .
. o ! r' " s ;s ox ww l_
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A 2-DOF model for axial vibration of a

uniform cantilever bar

EA

L

L

L 4EA
oy = [ EAW dx =T
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my, =f P""{'l"r"lﬁrd'r = T
{

L pAL
mm:mz[:L p“"'wllﬁldl_ 4
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L
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Assumed-Modes Method: Bending of
Bernoulli-Euler Beams

L L -
y=1 f El(v")* dx T f pAW) dx
0 | 0

L] L

N
vx, 1) =) ¥, (x)y; ()

i=1

L :
K, = fu EIY!y’ dx m,, = [] pAY, ¥, dx

L.
! p; () =f:] py(x, DY (x)dx
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A missile on launch pad
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A missile on launch pad

L
V= %f EI(v")? dx + 3k 65
i

8o(t) = v'(0, 1) = ¥} (v, (1) + ¥ (O, ()

L
[ Erv;vdx + kv O¥;0
0

L .
fu PAY Y, dx + MY (L)Y, (L)

Erxye pAL
m11=ﬁﬁﬁ (E) dx+ M} l)=—+ M

3

k.=
ij
_,ﬂAL
l k11=ﬂ+kll—i My =My =+ M
Py =0 LL -1
her ey = 2L 01
2 x - ki =ky =0+0=0 27 g
=17 VT aEl 4EI
S =5 H0= 3
[ pAL PAL 1., ~k .
-3-“ MT-I-M |u1 N E (0 v, 0
PAL pPAL i 4El o 1o
—_—tM — 4+ M 2  ——— 2
. 4 3 * - B [

\
i! 2 Z

School of Mechanical Engineering
Iran University of Science and Technology



Structural Dynamics
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SUMMERY

Application of Lagrange’s Equations to continuous
models:

>ASSUMED-MODES METHOD

To generate an N DOF model of a continuous
system, the continuous displacement u(x,t)is
approximated by the finite sum:

u(x, 1) = ) ¥, (x)q; 1)
i=1

@-
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Axial vibration of a linearly elastic bar

-—I——)- ulx, t)
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Axial vibration of a linearly elastic bar

W = f plx,1)du(x, t)dx = ZF‘ (Ndu; Su(x,t) = Zw (x) Su,

=1 i=1

— |
p;(1) = f plx, Dy (x)dx |
D .

Em i +Z;:; =p M, i=12..N
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Assumed-Modes Method: Bending of
Bernoulli-Euler Beams

L L -
y=1 f El(v")* dx T f pAW) dx
0 | 0

L] L

N
vx, 1) =) ¥, (x)y; ()

i=1

L :
K, = fu EIY!y’ dx m,, = [] pAY, ¥, dx
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Other Effects: Distributed Viscous Damping

. potx D

ple, 1) = —E(x)uix, 1) ) =i
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Figure 1 Distributed viscous damping acting on the beam.
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Other Effects: Geometric Stiffness

In a situation where a member is subjected to
axial loading and also undergoes transverse
deflection, the axial load may have a significant
effect on the bending stiffness of the member.
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Other Effects: Geometric Stiffness

Using the virtual work done by the compressive
axial force, N(x), the generalized geometric
stiffness coelfficient k;is obtained:

/H “,I:‘dv | - H d (se)
de
- . ' — B

A

-
L4 / /
A — ,
- . .
— B N (x)

A

o

0 = tan‘1(v’) | N (x) A

e -
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Other Effects: Geometric Stlffness
Assume that the element o AL
AB of length dx remains dx / s

in length but rotates to the ’ _ S —
position A*B*due to the S "

9 ax

transverse deflection: ' L

8 =tan\(v")

| &

AB = A*B*cos(V') +de cosv ~ 1 — -(v)
dx = dx[1 — -(v) ]+ de

de = %(u’)2 dx — d(be) = 8(de) = v' v dx

| L
Wy = f N(x)v' §v' dx
0
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Other Effects: Geometric Stiffness

()

by el okl el el el il

: L
Koij = [ N @Y (x) da
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CONSTRAINED COORDINATES AND
LAGRANGE MULTIPLIERS

Occasionally, it is desirable to employ a set of
coordinates that are not independent.

Let these be denoted by g,, d,,... , gy, Where > N
and assoclated C = M - N constraint equations.

Let these constraint equations be written in the form

Fi@ign e =0, j=12,_..C

School of Mechanical Engineering
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CONSTRAINED COORDINATES

? e
—
},.

x\2
u(x,f) = zg; + (‘_) 82

7/

L .
u@Q,t) =u(L,t) =0

f(g1, &) = u(L,t) = g1 +g=0



CONSTRAINED COORDINATES

=] *

d 97 8T 3V
drdg, = ag  og

gt dr =0

Since the ég’s:are not independent, we cannot
just set the expression In brackets to zero.

School of Mechanical Engineering
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-——(Sg’ =
dg,
Sg, ¢ dr =0




CONSTRAINED COORDINATES

[ 1! ‘ [ L] . *

' d 07T 07T dV df,;
_AOT AT OV ST [ se =0
jl * Z drdg, g, g 7

We can choose the Lagrange multipliers so as to make
the bracketed expressions for /=1, 2,.... ,Cequal to zero.

Thus, the bracketed expression must vanish for all dg’s

giving the following Lagrange's Equations modified for
constrained coordinates:

School of Mechanical Engineering
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Alternative Lagrange's Equations

C .
d()T—aT —()—E—ZA?—‘}:{ p i =1.2
dt g, 0g; dg, = "Bgs
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Example:

2 Z —'—)-u{x,ﬂ %
u(x,f)=%gl+(%) 82 A R E
(O =uLiy =0 F— /

-
d 3T 987 oV d

'—-f —_— + )\.J. fj'-: » 1:1.2 ..... M
dt 0g, 0g.  9g pouy g, |

f(gls 32) E U(L, t) ~ &1 +82 ==




Example:

f(gls gl) E U(L, t) — 81 +82 = 0

1 17 v N M1
s3l|&| EA|11 81 A 0
pAL_%%_[ézldrfk.l%_lgz}_[l]:{o}
pAL EA
g+ —g =0

10 L
u(x,t) = [{- -(%)z:l g,(1)

School of Mechan IE g ing
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Structural Dynamics

Lecture Five: Vibration of Undamped 2- DOF Systems (Chapter 9)
By: H. Ahmadian - S

ahmadian@iust.ac.ir
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Vibration of Undamped 2-DOFSystems

1. The natural frequencies and natural modes of a
system.

2. Expressions for the response to initial conditions.
The beat phenomenon.

The natural frequencies/natural modes of systems.

4. The modal matrix, the modal stiffness matrix, and the
modal mass matrix.

5. EXxpressions for the steady-state frequency response
In principal coordinates and in physical coordinates.

> An undamped vibration absorber.
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FREE VIBRATION : NATURAL
FREQUENCIES AND MODE SHA

RS P P

My M

u-(1) = U, cos{wt — a)

PES

0
0

'{Ill ki

d _ m!
kll kl:] [

ey Mys

u, (1) = U, cos{wr —a)
Il

My Mo

Net-=1o)]

H:k.. k”]_mg[ﬂlu "11::H -0
ki ka2 CLma ma
W) _ @ _ & _ 1 N
fi=50 LT ¢’=l¢2]_[ﬁrl’ r=1h2
u, (1) .
u(r) = i | = A ¢, coswt + By ¢, sinwir + Ay @, cOsw,t + By ¢, sinwat
2
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BEAT PHENOMENON

(k' < mgLja*)

LK<k,

e

Kk S o k-
wf\# mo WA m W

2

i, (0) = U, “2“}-} : 0.
i, (0) = u,(U0) = 0

(a) Obtain the natural frequencies and mode shapes of the system.

(b) Determine expressions for the motion of the two masses given the initial
conditions.

(c) Let system parameters 4, k<, and m be such that f, = 5.0 Hz and f, = 5.5 Hz and
let the initial displacement be v, = 1. Plot the respective responses of the two
masses.
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Solution: Natural Frequencies and Mode

Shapes
m 0 I\ k+ k' =k o 0
0 m i, * -k k+ K . 1o
l (1) ] = l Y, COS Wi andlet k' = 8k, A=
HE(F) U2
I +8 -4 _ 0
—5 1+6 0
W21 +8)+(1+25=0

A 1 k J k
=(l+8)Fs= — W =, wy = ] — (1 + 26)
lzl (1+97 |1+25 'SV m m
& School of Mechanical Engineering
Iran University of Science and Technology
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Solution: Natural Frequencies and Mode

Shapes
[ERARIHEH
)

Symmetric mode

School of Mechanical Engineering
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Solution: Free Vibration Response

i
u, (1) = —2'3 (cos wit -+ cos w.t )

4
(1) = Eﬂ (cos wy ! — cos w,t )

(148)"~ (1+nd),if 8§ 1| @1 =y w; = \/;(l + 28) =~ (1 -{-5}_‘/-";

m
cos(a i—ﬁ}:cusucusﬁq:sinusinﬁ wr + ,H-w:_w'r
a = > [. == 5
Wh — W m;++m.r
(1) = uy | COS > ! COS 5

oWy, — W, -'.th.":'1-‘l-‘-1|lr
u:{:.',‘) = My | SN 5 r sin 7

gl
u.l{f) = | Wy COs —2'_ Cnswﬁng

. {.-.}BI .
uz({} = | g 51N —2_ sin wavgr

School of Mechanical Engineering
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Solution: Frequency Assignment

el =¥ _ 550 Hz
f.=E*-SUUHz fz o
ay +w
wg = wy — w, = 7 rad/sec, Wyvg = 12 10.5  rad/sec

“H‘r ,11“““1‘r 'A“““
[k "””" R

(11 )eny = Uy cns — (u;) = Uy SIN ——

2 2

““““‘. ‘l“““h' 'l‘
' i ”' ” U




FREE VIBRATION OF SYSTEMS WITH
RIGID-BODY MODES

Rigid-body modes have a corresponding natural
frequency of zero (semidefinite eigenvalue problem).
) O

O L/
(a8 -

(a ) mode [: translation (plunge) rigid-

(b) body mode;
| (b) mode 2: rotation (roll) rigid-body
| mode;

(c) mode 3: flexible mode.

(@) C'\\C)//j
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FREE VIBRATION OF SYSTEMS WITH
RIGID-BODY MODES g _yu

3 2K
2k — 2im W —2k U:I _ 0 om '\J\I'\i]‘\, m
—2k 2k — mw? L/, 0 &
0 =0, ¢ = l 1 } 3\ 12 1
1 ‘.I 1 %E(;) s¢:=l*2]
t L Node poin
1 1 1




INTRODUCTION TO MODE SUPERPOSITION:
FREQUENCY RESPONSE

This section considers the response of a system
to harmonic excitation.

And provide an introduction to the mode-

superposition method for solving for the dynamic
response of MDOF systems.
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Response to Harmonic Excitation

U u

*\'\'\‘\'\'\ .»"x’\’\ \"a’\‘l }"\ AN
. 1 O i 2 -1 j P,
L e

¢ Pn 11
® = (¢, ¢,] = -
wt = k/m, e ['ﬁ’:l ¢'22] [l "%}
I\ ; wi = %{Um)
/I - -5

ShIth ngme'g
Iran University o fS and Technology




Response to Harmonic Excitation

—
—

u,(f)
Hz(f_)

|

|

1

1

1 —3

I

n, ()
n(1)

|

u(r) = D y(t)

&7 [Mii + Ku = p(1)]

My + Ky = p()

M=0"M®, K=90"K® p(r)=a"p@)

\
!ﬁ ti

M =

pr) =

School of Mechanical Engineering

Iran University of Science and Technology

I

1

i i —_— =t =t ek
I

!

[ o | L S—y [T T Wy [ | e —y

| L |

Cm 0]'1 1} [3 0}
B il PPN
0 2m || 1~} 0 3
- Ok -k'[1 1] A|:3 0}
I
—k 3k || 1 -5 02|
PP! I {P}
+ cos 821 = cos §21
1 .




Response to Harmonic Excitation
(moaal response)

3mil, + 3kn, = P, cos Q2

%m N, + L—f’kn; = P, cos

P (/3P
h = Y, cos S Vo= e —3mQ 1 — (/e
P, (4/15K) P,

My = Y: cos S2r Y, — —= ;
" %k — ImQ I — (§2/w:)-

School of Mechanical Engineering
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Response to Harmonic Excitation
(Physical coordinates response)

u, = U, cos S, - = U, cos 2t
JLE{!
P
3.00
1.00
—1 / L/,
e~ ,
oo [ |/
30800 1.00 2.00

(a)

U P, /3k 4P, [15k
T = (/) 1= (@)

. P, /3k l[ 4P, /15k ]
T = (Q/w) 21— (Rfw)?
} K2

P!
3.00
1.00
| 24
-1.00 [
-39 %0 1.|I’JCI t 2.00

()

Frequency-response functions for (a) mass | and (b) mass 2.

School of Mechanical Engineering
Iran University of Science and Technology



UNDAMPED VIBRATION ABSORBER

P, cos Qt P, cos Qt _T_UH

mass
my

my
? k»
k R‘I k1
ks L Absorber - - o

mass

O A A A S A A A A A A S A S S S A A

m, 0 i, + -IC| +k1 "kg iy _ P, ‘CDS Qr
O I i‘:ll‘] _'kl .'.C: M - 0
Hl{f} — UI. Cﬂﬂﬂ-r., HJ(I} = U]'CDS ﬂ!
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UNDAMPED VIBRATION ABSORBER

2 ke
(ky — Q2°m;) P;
UiED = Gk = 2m(k — @ma) — k3 | a
k, P, 0 * 2,
U:(8) = (k, + k; — Qim,)(k: — Q2m;y) — k’-%

School of Mechanical Engineering
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Vibration of Undamped 2-DOFSystems

The natural frequencies and natural modes of a system.

Expressions for the response to initial conditions.
> The beat phenomenon.

The natural frequencies/natural modes of systems.

The modal matrix, the modal stiffness matrix, and the
modal mass matrix.

Expressions for the steady-state frequency response In
principal coordinates and in physical coordinates.

> An undamped vibration absorber.
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Structural Dynamics

Lecture Six: Vibration Properties of MDOF Systems (Chapter 10)
By: H. Ahmadian - :
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Vibration Properties of MDOF Systems:
Modes, Frequencies, and Damping

1. Some Properties of Natural Frequencies and Natural
Modes of Undamped MDOF Systems

2. Model Reduction: Rayleigh, Rayleigh-Ritz, and
Assumed-Modes Methods

3. Uncoupled Damping in MDOF Systems

4. Structures with Arbitrary Viscous Damping: Complex
Modes

5. Natural Frequencies and Mode Shapes of Damped
Structures with Rigid-Body Modes

School of Mechanical Engineering
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Properties of K and M

Stiffness matrix K and mass matrix M are related to strain
energy and kinetic energy by the quadratic forms:

V=3u'Ku, 7=li"Ma

KT =K and MT = M

For most structures K and M are positive definite matrices

— For any arbitrary displacement of a system with positive
definite K from its undeformed configuration, the strain
energy will be positive.

— For any arbitrary velocity distribution of a system with
positive definite M, a positive kinetic energy will result.

School of Mechanical Engineering
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Exceptions

K of systems that have rigid-body freedom:
— K Is said to be positive semidefinite,

— Strain energy can be either zero (for rigid-body
motion) or greater than zero (for motion
resulting in deformation)

— K Is a singular matrix.

M of systems with degrees of freedom that have
no associated inertia:

RIS

@ @
% Mgz L

School of Mechanical Engineering
Iran University of Science and Technology

ocood
]
oo O o

oo
1—A

ood o



Eigensolution

Mii + Ku =0 Characteristic equation
u(s) = Ucos(wf — a) det(K — mEM:} =0
K — o MU=10
2
ﬂim%iiﬂii' < £ S W
U,
U
Ur _— .1 b F= 1' 2" ' N
Uv ),
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Scaling (Normalizing) the Modes

If the value of one of the NV elements of a natural mode
vector U, Is assigned a specified value, the remaining A -
1 elements are determined uniquely.

— Thus, we say that the mode shape is determined
uniquely, but not the mode's amplitude.

There are three commonly employed procedures for
normalizing modes:
— Scale the r'" mode so that (¢}, = 1 a specified
coordinate I.
— Scale the r'™ mode so that the maximum displacement is
unity.
— Scale the r'" mode so that its generalized mass, or
modal mass, ¢Mg¢, is unity.

School of Mechanical Engineering
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Mode Shapes: Distinct Frequencies

D(w,) = K — w’M
-

-.ﬂuﬂ[mr} Dﬂh{ﬂ-‘!r} | I . ﬂ i‘ﬁ } __ I'ﬁ]
| Du(w) Dy(w,) || &) |0 N
¢

{'lf-'.g, e = — [Dbb(mrﬂ_lnm{mr]




Orthogonality

(¢TK¢,) — o ($M¢,) =0
($TK¢,) — w (¢, M) =0

(w? - o)) (@IMe,) =0

¢TM¢J‘ =0 if w, # [N

l#‘fi{&, =0 if. w, 7 W,

School of Mechanical Engineering
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Mode Shapes: Repeated Frequencies

If the eigenvalue Is repeated p times, there will be
p linearly independent eigenvectors associated

with this repeated eigenvalue.

i Dﬂﬂ {mr] Dab{mr) i

pxp pxiN=p)

!}f::: ':mr) D.!:-.Er (‘mr)

| IN=pixp  (IN=p)x({N=p) _

e
¥,

@»

(9.} =

(#4) = ~[Dy (@)

I Diu(@)(9,),

»
@,
9.), =1 »
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{¢'u}|'a+l‘.

0
1

|.¢"r'..v

01

ﬂ E

=

P oinn=10"}

¢p+1

¢p+l

b |




Example:

(a) Solve fort
(b) Solve for t

(c) Evaluate t

ne three natural frequencies of this system.

ne three normal modes of the system.

ne orthogonality relationships.

tLH PAL TUE UET
m=——

~——@ -—®
p—

a2

o 0n
Z-lo20

=

[0 ] 2w [ 1-2 1][w] [oO
'!,.i':p <+ L3 -7 4 _2 1 h — []
(L5} 1 =2 ] iy 0
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Natural Frequencies:
K - o*M]¢p =0

I T -} 1] 0 AL
DL =| -2 22-1) =2 | } lg\ l—mziﬂﬂ

M —4)=0
Ay = A, =0, Ay =4

: ,  48EI
w, = s ——ﬂ, w, = PALq'
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Normal Modes:
—3[—2 1 1
g =4 ——p [ Duahs) Dus(da) l ! \ _| ===l
Do (A3) Desl(Aa) ¢, 3 1‘—2 -3 ¢

{$,): = % } ~ (D5 (23017 "Dy, (A3)

St

3
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Normal Modes:

1 -2 17
1 -2 1
D) D) 1[0, ] | é—i[ 17 [ & 0
D) D) | | 0 | = || 12T 8

(¢s), = —1[ 1 2]{‘”, F=1.2
faf-u—[-lz}{ } (rfhh—[—lE]{ ]_z
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Orthogonality Relationships:

"m0 010
¢TM¢E=[IG-—-1] 0 2m 0 1 } ==-2m#1{
0 0 m

i | 2
m 0 0 1
¢TM¢3=[lﬂ—l] 0 2m 0O -1 ;=0
0 0 m 1
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Orthogonality Relationships:

It IS possible to use a set of p linearly independent
modes to create a set of p modes that are
orthogonal (Gram-Schmidt Procedure).

a'z — ¢'1_+ '_3!'1-_

[m 0 O
$™¢,=[{10-1]| 02m 0 [{1}=0
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Modal Matrix and Eigenvalue Matrix

®=1(9 ¢ - $x)
K® =MeA

|A = diag(ef, @2, ..., w?)

Generalized Mass Stiffness Matrices

M = &"M& = diag(M,, M,, ..., My)

K = ®'K® = diag(K,, K,, ..., Ky)

- T I
L] ll—
School of Mechanical Engineering
Iran University of Science and Technology




Mode Superposition Employing Modes
of the Undamped Structure

Mu + Cu + Ku = p(1)

Mode superposition using Mode superposition using | Direct integration of
real modes of the undamped | or |complex modes of the damped | or |the coupled equations of
system - | system o ' motion

N
u(@) =y ¢,1,(1) = en(n)
r=|

Mi+Cnp+ Kn=®p@)

M = ®"™™M@® = modal mass matrix (diag.)

C = ®'Cd = generalized damping matrix

K = ®"K® = modal stiffness matrix (diag.)
®Tp(r) = modal force vector

School of Mechanical Engineering
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Lecture Seven: Vibration Properties of MDOF Systems (Chapter 10)
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Vibration Properties of MDOF Systems:
Modes, Frequencies, and Damping

1. Some Properties of Natural Frequencies and Natural
Modes of Undamped MDOF Systems

2. Model Reduction: Rayleigh, Rayleigh-Ritz, and
Assumed-Modes Methods

3. Uncoupled Damping in MDOF Systems

4. Structures with Arbitrary Viscous Damping: Complex
Modes

5. Natural Frequencies and Mode Shapes of Damped
Structures with Rigid-Body Modes
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Rayleigh Quotient

| vIKv
2 __ _
. .a)R = R(V) = VTMy

v=) ¢,

r=1|

R(V) = w.cl +a)§ + . +cuNc:N
Cl+c2+”'+cN

@-
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Rayleigh Quotient
Error Analysis

w? :::1 +a)zc2 -+ +cuNc:N
| Cl+c2+”'+cN

< R(V) < wi,

2 1 + (Cg/Cl)z(a)Z/a)])z -+ (CN/Cl)z(a)N/_CUl)z
1+(02/01)2+ -4 (cn/c1)?

R(v) > “’1

R(v) =

2

R(V) =

School of Mechan IE g ing
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Example:

I

=

1
k

-

F=c[m m» m3]T = {1 1
-1

I 0
0 1
0 0

2

- —1

0
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—1
3
—2

0
-2
2J

1

2
—1
O

—1
3
—2

217

e




Example:

.
u‘ Ku 27k 4

R = w? = — =0.1399—
“ T uTMu  193m | m

/ [ k
w = 0.3740 —k— w1 =0.3731,/ —

Exact solution

w—wi  0.3740—0.3731
w1 0.3731

= 0.002412 =0.2412%
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Rayleigh-Ritz Method for MDOF
Systems

u(t) = veos(wt — o)

Preselected linearly independent assumed-mode vectors.

N
v:Zﬁif=‘F7 (ﬁ<N)

School of Mechanical Engineering
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Rayleigh-Ritz Method for MDOF
Systems

Ritz proposal: the coefficients v; be chosen to

make TR (V)stationary SR(V) =0  i=12...

N i
Z(ku o azrﬁ'.])vf = 0" l — 1525 « e ey N

K - 2’M]V =0

School of Mechanical Engineering
Iran University of Science and Technology
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Assumed-Modes Method for Model
Reduction of MDOF Systems

The Rayleigh-Ritz procedure is a model order-reduction
method that applies specifically to free vibration.

This method can be considered to be special case of
applying the Assumed-Modes Method'to reduce an N-
DOF system to a N-DOF system by assuming that:

N
u() =y (1) = V()

. ™ . "
ik
Mu+ Cu+ Ku = p(s
School of Mechanical Engineering
Iran University of Science and Technology



Eigenvalue Separation Property

(K — AM]v =10

[K(m) A’(m}M(m)]v(m) —
m -0,1,....,N—1

K("’) M( obtained by deleting the last /m rows and columns of K and M

{
A <A < q <) << form=0,1,2,...,N =2
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Eigenvalue Separation Property

M =AY <A <A <5 AR, form=0,1,2,...,N =2
lp%) A pe
} o) ' - 'U1 1*’2 '
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Eigenvalue Separation Property

> The

eigenvalue separation theorem can be

employed directly to show the convergence
properties of frequencies obtained by the

Ray

»Eac
Ray

eigh-Ritz method.
W of the N< N eigenvalues produced by a

eigh-Ritz approximation to an NV -DOF

system is an upper bound to the corresponding
exact eigenvalue,

> The

eigenvalues approach the exact values

from above as the number of degrees of
freedom, NVincreases.
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Eigenvalue Separation Property

Table 10.1 Convergence PrOpertiés of Rayleigh—Ritz Frequencies

DOF = N = 1 2 3 N-1 N
“Constraints” = m = N -1 N-2 N-3 1 .0
First eigenvalue )&ﬁ” =D > A(,N"z) > A(,N'3) > Aﬁ” > A
Second eigenvalue P ¥ A > Az
Third eigenvalue AV > Ay > As
Nth eigenvalue Aw

School of Mechanical Engineering
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UNCOUPLED DAMPING IN MDOF
SYSTEMS

Mu + Cu + Ku = p(7)
Equation of motion in principal cooradinates.
Mp+Cnp+ Knp= & p(r)
M = ®"™M& = diag(M,),
K = ®'K® = diag(K,) = diag (a) M)
C=oCo

\The generalized damping matrix is

not diagonal.

Scho IfM chan IEg ing
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UNCOUPLED DAMPING IN MDOF
SYSTEMS: Raleigh Damping

C =agM+alK

C = ®'C® = diag(C,) =
diag(a, + a,w*)M, = diag(2¢,w. M,)

__1 ao+
" 2 \w, G

Mrﬁr + 2Mrwr§rnr + wEMrnr - ¢Ep(t), r=1, 2s ..., N




UNCOUPLED DAMPING IN MDOF
SYSTEMS: Modal Damping

€ = ®™C ® = diag(C,) = diag(2¢,,M,)

Typical values lie in the range 0.01 < {, <0.1.

M, + 2Mra)r;f)r + a—’?Mrnr = ¢Ep(t)s r=12,...,N




Damping Matrix C in Physical
Coordinates
C=9¢ 'Co’'
d'MP =1
—— C=M®)C(d'M)

N
C=) 25w (Mé,)(M4,)"
r=I |

There will be no damping of those modes for
which its damping ratio Is set to zero.



Damping Matrix C for Augmented Modal

Damping

Nc—l
C=aK+ ) 250,M$,Mg,)
r=]
I @,
a, = = ’ r — Cl" - c c
' wp, ‘ ) WONe
specified value, r=12,...,N.
I r=N.+1,N+2,...
Wy,
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UNCOUPLED DAMPING IN MDOF
SYSTEMS

Example 10.5 (a) Use Eq. 10.87 to define a physical damping matrix C for the four-

story building in Fig. 1. Assign two damping factors: ¢; = ¢, = 0.01. (b) Determine
the resulting damping ratios ¢; and ¢,.

“my =1 kip-sec?/in.
P, cos Qt . :

4”1
_ : - My =2 o
" 1-1 0 0 k = 800 kips/in. —r; > U,
-1 3-2 0 - 1600 —
K =800/ : k, = 1600 = — U
0-2 5 -3 ks = 2400 _ ol —u,
— 0 '0‘ —3 7 ~ Ky = 3200 PP7ITTTTTITTTTITTTT
1000 1.00000 13.294
0200 - 0.77910 29.660
0020 | #1=1040655 ( © = | 41.079 [ r2d/5C
0003 0.23506 55.882
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UNCOUPLED DAMPING IN MDOF
SYSTEMS

0.59051 —0.45988 0.05071 0.03601 |
—~0.45988 1.74233 —0.99987 0.05611
0.05071 —0.99987 2.74760 —1.58258
0.03601 0.05611 —1.58258 3.80153

o

| ) | '
C=aK1 { @ (M¢'l)(M¢3])T
M,

2 & A @
a = E-, L=8-5H—
w» 425)

M, = ¢"M¢, = 2.87288 kip-sec*/in.

School of Mechanical Engineering
Iran University of Science and Technology
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UNCOUPLED DAMPING IN MDOF
SYSTEMS

W,

CF —_— cz-""‘, y = 3. 4
W
41.079
— (. = 0.0138
3 =001 (29.660)
55.882
_ — 0.0188
4 = 0.01 (29 660)
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Vibration Properties of MDOF Systems:
Modes, Frequencies, and Damping

1. Some Properties of Natural Frequencies and Natural
Modes of Undamped MDOF Systems

2. Model Reduction: Rayleigh, Rayleigh-Ritz, and
Assumed-Modes Methods

3. Uncoupled Damping in MDOF Systems

4. Structures with Arbitrary Viscous Damping: Complex
Modes

5. Natural Frequencies and Mode Shapes of Damped
Structures with Rigid-Body Modes
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STRUCTURES WITH ARBITRARY VISCOUS
DAMPING: COMPLEX MODES

Mu + Cu + Ku = p(z)
Equation of motion in principal cooradinates.
Mp+Cnp+ Knp= & p(r)
M = ®"™M& = diag(M,),
K = ®'K® = diag(K,) = diag (a) M)
C=oCo

\The generalized damping matrix is

not diagonal.

Scho IfM chan IEg ing
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State-Space Form of the Equations of
Motion

Mu + Cu + Ku = p(7)
u(t)
Hl) = l v(t) }
[_(z)+Bz(r) F(t) ]
. |, _[K O 1 p(t) |
_MO “O—MF()_ 0




State-Space Eigenvalue Problem
Az(t) +Bz(t) =0

Z(1) —0eM = [ g" }e” — { Ag“ } e

DA + B = 0]

det(AA +B) =0



State-Space Eigenvalue Problem

The coefficient matrices are real, the 2N
eigenvalues must either be:

> Real

»very high damping leading to overdamped
modes

» Occur in complex conjugate pairs,

»most structures will have N complex conjugate
pairs of eigenvalues and corresponding
complex conjugate eigenvectors.

School of Mechanical Engineering
Iran University of Science and Technology



Orthogonality Equations for Complex
Modes

0'(\A+B)8;, =0 | 6/[x;A+B]9, =0

9TAG, = 0,

Ao#EN, i j=1,2,...,2N
9}B91=0, }



Orthogonality Equations for Complex
Modes

©=100, 6, - 0]

O'AO = diag(a,), @TBO = diag(h,)




Interpretation of State-Space Eigenvalues

A, = + 16,
-—g',,a) + lw \/1 — §2 = —{,w, + 1wy
_..ar
= Jo? + ﬁ ¢, =
? - \ W,
Natural Frequency Damping Factor

School of Mechanical Engineering
Iran University of Science and Technology



Interpretation of State-Space Eigenvectors:
Scaling and Rotating of Complex Eigenvectors

The elgensolution can be expressed In terms
of real and imaginary parts by:

Al u Al
fe _{kﬂu}e
0, =x-+1y, A=« +if

The following example gives a physical feeling
for the results of state-vector eigensolutions.

School of Mechanical Engineering
Iran University of Science and Technology



Interpretation of State-Space Eigenvectors:
Scaling and Rotating of Complex Eigenvectors

Example 10.6 For the four listed versions of the 2-DOF spring—mass—dashpot system
in Fig. 1, use state-space eigensolutions to determine the natural frequencies, damp-
ing factors, and mode shapes. Discuss your solutions. The four systems are: (a) the
undamped system, (b) a system with dashpots that produces C = 0.5M, (c) an under-
damped system with a single local de~=er ~- — 20 and (d) an overdamped svstem with

Uy Uz

a single local damper ¢; = 200. +, _*_,

; k1 k2 k3 ;

AT WA P,

/] — — e — 4

M=|™ 0|10 T ——
0 m, 02 VAT A A A G A S Ay A S &7 S Y S Ay S v S

@)
1

Ci1 12 — cL+C —C ]
i Cn Cxn2 —C %] + C3

w_[kt+k -k ]_[ 2200 -600] | , _[CM] B;[K 0]
"‘kg k2+k3 o "'"600 3800 1 ' MO ' 0——M

School of Mechanical Engineering
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(a) Undamped system

0+ 50.0i )
G 0-50.0i |
| 0+ 40.0i
0—40.0i |
0+ 0.020 0 — 0.020i 0+ 0.025i 0—0.025i
6 - 0—0.010: 0+ 0.010i 0+0.025i O—- 0.025i
1 —=1.00 -1.00 —1.00 —1.00
050 0.50 - |—1.00 | —1.00
Observations: i

» The eigenvalues are pure imaginary; there is no damping.

» Elements of eigenvector are in phase or out of phase with each other.
» The combination of the two complex-conjugate eigenvectors leads to

the real motion of the symmetric mode.
-

School of Mechanical Engineering
Iran University of Science and Technology



(a) Undamped system

Let us add the top parts of the third and fourth
eigenvectors as follows:
f R - R

( 0.025i |
1 0.025:

—0.0251
—0.0251

_ { 0.050

A3l Agl
0,,36’ 3 +0,,4€ 4

b [cos(40.01) + i 5in(40.01)]

e

I [cos(40.0¢) — i sin(40.01¢)]

0.050 ] s1in(40.0 1)

This illustrates why complex eigenvectors must
occur in complex-conjugate pairs.

@

School of Mechanical Engineering
Iran University of Science and Technology



(b) System with M-proportional damping

—0.2500 + 49.9994 i
_0.2500 — 49.9994
A =1 -0.2500 + 39.9992
~0.2500 — 39.9992 |

[6,186.]=

[93 l 94] =

 0.0197
0.0098

)

Z 88.8190
Z —91.1810

[ 50.0 | 0.0050

,_]35001 ] 00050

400 [ ¢~ Y 0.0063

| 40.0 0.0063
0.0197

7 - 88.8190 )
0.0098 \_£91.1810

0.9847
| 0.4924

" 0.0245
0.0245

£ 179.1054
£ ~0.8946

Z —91.4762

£ —91.4762

0.9847 Z ~ 179.1054
04924  £0.8946 |

0.0245 £91.4762
0.0245 £91.4762

0.9810

| 0.9810

£ —1.1181
£ —1.1181

School of Mechanical Engineering
Iran University of Science and Technology

09810 Z1.1181
09810 Z£1.1181 | v

(88.8190 + 91.1810 = 180.0000)




(¢c) Local damping with C, = 20.

| —1.4958 +49.3641 - [ 49.3868 ] 0.0303
3 = | —1.4958 — 49.3641 i o= 49.3868 ¢ = 0.0303
- ~3.5042 + 40.3448 i ] 40.4967 0.0865
| —3.5042 — 40.3448 i | 40.4967 0.0865
- 0.0165  £72.938910.0165 £ —72.9389"
0. 16.] = 0.0076 £ — 74.86850.0076 £ 74.8685
PEP22™ 1 0.8138  £164.6745|0.8138 / — 164.6745
| 0.3760  £16.8671|0.3760 = £ — 16.8671
- 0.0177 £ 89.800710.0177 £ — 89.8007 ~
[93 0. | 00191  £63.9883]0.0191 £ —63.9883
0.7149 ~ —175.2353]0.7149  £175.2353
| 0.7737  £158.9524|0.7737 £ — 158.9524

Q

L]
l School of Mechanical Engineering
Iran University of Science and Technology



(c) Local damping with C4 = 20.

Observations:

> In this underdamped system with nonproportional damping, the
eigenvalues and eigenvectors occur in two complex-conjugate pairs.

» The natural frequencies are not exactly the same as the natural
frequencies of the undamped system

» However, since this is a fairly lightly damped system, the natural
frequencies are close to the respective undamped natural
frequencies.

» It has complex mode shapes.

* mass m1

o0 mass m2

School of Mechanical Engineering
Iran University of Science and Technology



(d) Overdamped system with local
damping with C3 = 200.

[ ~0.4097 + 46.9362i | [ 46.9380 | ' 0.0087 |
_ ] —0.4097 — 46.9362i | ] 46.9380 0.0087
A= —74.9604 W=y (8=
k —24.2203 J - L

" 0.0209 Z — 89.4497(0.0209 £89.4497
0.0013 ~£176.3264(0.0013 £ — 176.3264
10, 1021 = | 55557 71.0504|0.9822 Z — 1.0504
0.0631 £ —93.1735|0.0631 £93.1735
~ 0.0010 £ 180.0000|0.0089 £0
0.0133 £ 180.0000]0.0413 Z0
(65 1 0a) = | 55767 /0102153 Z180.0000
1.0000 Z0{1.0000 £180.0000

School of Mechanical Engineering
Iran University of Science and Technology




(d) Overdamped system with local
damping with C3 = 200.

Observations:

» There are two large negative real eigenvalues; the
system is overdamped to the extent that there is only
one pair of complex conjugate eigenvalues and
associated eigenvectors.

» The natural frequencies are not exactly the same as
natural frequencies

» of the undamped system.

» As can be seen from the eigenvectors (displacement
part), the masses are not in phase or 180° out of |
phase. And since this system is heavily damped, it has
'very“ complex modes.

School of Mechanical Engineering
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Vibration Properties of MDOF Systems:
Modes, Frequencies, and Damping

1. Some Properties of Natural Frequencies and Natural
Modes of Undamped MDOF Systems

2. Model Reduction: Rayleigh, Rayleigh-Ritz, and
Assumed-Modes Methods

3. Uncoupled Damping in MDOF Systems

4. Structures with Arbitrary Viscous Damping: Complex
Modes

5. Natural Frequencies and Mode Shapes of Damped
Structures with Rigid-Body Modes
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NAT
SHA
RIGI

URAL FREQUENCIES AND MODE
PES OF DAMPED STRUCTURES WITH

D-BODY MODES

» Special treatment is required in determining the
state eigenvectors of systems that have rigid-
body modes.

>t Is necessary to incorporate generalized
elgenvectors and the Jordan form of the
eigenvalue matrix.

School of Mechanical Engineering
Iran University of Sc

ity of Science and Technology



Generalized Eigenvectors: Jordan Form

»An NxN matrix Dis called defective when it fails
to have a linearly independent set of NV
eigenvectors (e.g. has a repeated eigenvalues).

» It Is then not possible to transform D into
diagonal form;

D® = dA

»Using a linearly independent set of generalized
elgenvectors D is transformed into block-
diagonal Jordan form

DQ = QJ

School of Mechanical Engineering
Iran University of Science and Technology



Generalized Eigenvectors: Jordan Form

The repeated eigenva

on the superdiagonal.

03
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Iran
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I
T

DQ=QJ J=

eering

echnology
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Aa

[

ead to Jordan blocks
having the eigenvalue on the diagonal and ones



Undamped Systems with Rigid-Body

Modes

Mu + Ku =0

@, isan N x N,

KO, =0,

Az(t) +Bz(1) =0 [AA+BJ0 =0

. K 0
|0 -M

JHef-lo)e=1e]




Undamped Systems with Rigid-Body
Modes

» There are only N, rigid body modes.
»Zero eigenvalues must occur with multiplicity 2V,
» The generalized eigenproblem Is defective.

» For each regular state rigid-body mode, there will
be a corresponding generalized state rigid-body
mode

INCA [g (1) ] +B[o’ 67] =0 0]

Scho IfM chan IEg ing
I[ran Uni yofSc dT chnology



Generalized State Rigid-Body Mode

A[G’\G”] [g (1)] + B[O’ a:\] = [0 0]

regular state rigid-body modes generalized state rigid-body mode

BO' = —AQ,

School of Mechanical Engineering
Iran University of Science and Technology



Generalized State Rigid-Body Mode

K 0
0 -M

—

L

@ H‘_

Hr

@H

uvr

KO’

—

— Onr

I

M 0

0 M |

-M[©], - ©,]=0, — 6, =0,

The reqgular state rigid-body mode contains the
displacement representation, it is sufficient to set

T
gur = u-"*"

School of Mechanical Engineeri
Iran University of Science and

ng
echnology




Generalized State Rigid-Body Mode

The complete set of state rigid-body modes for an
undamped system is given by:

OHF Onr
0., O,

e ey— ity ——

@,. == [@; @:] n

School of Mechanical Engineering
Iran University of Science and Technology



Example

Uy Uz ‘
‘-
"W
///D//////}]/////////////D///////D////

0010 -

| 1

: 1
0 B = 0
0 0

_—0 O

00 0
100
010
=0, 0

School of Mechanical Engineering
Iran University of Science and Technology




Example

The rank of (x,A + B] IS 3, there will only be one
regular state eigenvector given by:

B, =0 ¢"=[1100]
Bo, = —A6, 6T=[0011]

"10 1 1 - "0t 0 0

10 -1 -1 000 O

@=lo1 iv2-iv2|| I=|D00[ivz O
01 —iv2 iV2] loo] 0 —iv2_

School of Mechanical Engineering
Iran University of Science and Technology



Viscous-Damped Systems with Rigid-
Body Modes

MM+ 2AC+K]6, =0

K o0 ][] [cMm]|[e,]
o-M||lO,] ([(MO0]]|O, |

KO/ =-C®,, — Dependson C
“M[@):r — G)ur] =0, — @):r = 0O,




Viscous-Damped Systems with Rigid-
Body Modes

»|f any of the columns of Cce,,, are zero, there
will be a solution for the corresponding column
of K®,, just as for the undamped case.

» For those columns of C ®,, that are not zero,
there will not be a solution for the
corresponding columns of K@,

»Hence, the assumption that » =0 Is a double
root leading to both regular and generalized
state rigid-body modes is not valid.

School of Mechanical Engineering
Iran University of Science and Technology



Example

Determine the eigenvectors corresponding to
zero eigenvalues.

=

03

m

L .

my

L

|

My

(-
.

NNNNNNN\N

e Rl e = - .
AT T

1 00 1 —1
M=|010 K= -1
001 0 —1

School of Mechanical Engineering

Iran

University of Science and Technology

2 —1
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(a) Case for whichC#8,, =0

[ 0.2 -0.2 0.0
C=| -02 06 -04
0.0 —0.4 0.4 |

WZOA+12234+4240%+180+3)=0
“ -

o O

1
1
[0, 0.]=

CJOO

1
1
o1



(b) Case rfor which C@,, # 0.

02 -02 0.0
C=1| -02 06 -04
00 —-04 0.6

LGS + 1404 +4.403 +2.416A% +3.124.+0.2) =0

» The rigid-body displacement mode is the same
as for previous case

T
ul - [1 1 1 ]
»No generalized eigenvector corresponding to
A=0

@-
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Dynamic Response of MDOF Systems:
Mode-Superposition Method

» Mode-Superposition Method: Principal Coordinates

» Mode-Superposition Solutions for MDOF Systems with
Modal Damping: Frequency-Response Analysis

» Mode-Displacement Solution for the Response of
MDOF Systems

» Mode-Acceleration Solution for the Response of
Undamped MDOF Systems

» Dynamic Stresses by Mode Superposition

» Mode Superposition for Undamped Systems with
Rigid-Body Modes

School of Mechanical Engineering
Iran University of Science and Technology




MODE-SUPERPOSITION METHOD:
PRINCIPAL COORDINATES

Mii + Cu + Ku = p(1)

u() = en() = Y- é,7,(1)
r=1

Mi+Cyp+ Kng= f(t)

M = $'M® = modal mass matrix = diag(M,)

C = &'C® = modal damping matrix

K = ®"K® = modal stiffness matrix = diag(w>M,)
f(t) = ®"p(¢t) = modal force vector

School of Mechanical Engineering
Iran University of Science and Technology



Modal Damping: Uncoupled Equations of
Motion

C = ®'C & = diag(C,) = diag(2¢,w, M,)

M.ij, +2M, 0,50, + WM., = £,(1), r=1,2,...,N

Initial Conditions iIn Modal Coordinates
u(0) = en(0), u(0) = &7(0)
®™™Mu(0) = Mp(0),  ® M) = M3;(0)



Mode-Superposition Solution for Free
Vibration of an Undamped MDOF System

N
u(r) = z ¢, (a, cosw,t + b, sinw,1)
r=1

$Mu© _ $TMu(0)

.1

M, ' M. w,




Example. The free vibration response of
a 2-DOF system

,
k

K K
WAAAH m WA o VWA

il

u(O):[L?O}, ﬁ(O):lgl

-mO- _ 1 B 1
M=_Om], ¢,—[1}, ¢3—I_1

School of Mechanical Engineering
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Example. The free vibration response ...

- 0 I _—m 01} O _ 0
M,:[ll][’gm]+l]=‘2m Mu(o)__o’"_luo]—[muo]
m 0] 1 . “m 07110 3 0

| ‘ 0
_$iMu©® _ 1, _ o
. M, 2m mug 2

a

¢;Mu(0) 1 _ 0 | _
a, = — —2m[1 lll ]— 2

Mz mio

U (t) ug 1

= —  COS @yt — 2 :
w2 )1 CTo ) o [

Ll LEUP I P

School of Mechanical Engineering
Iran University of Science and Technology



MODE-SUPERPOSITION SOLUTIONS FOR
MDOF SYSTEMS WITH MODAL DAMPING:
FREQUENCY-RESPONSE ANALYSIS

. 1
??r + 2;,-er,- + wr nr —_ _¢ (t)
M,
p(t) =PcosQt  F, = ¢'P
F 94
nr+2cra) nr +w nr —(!) }-{_e
- F,/K, i 2,
Ua Y s T Al B Rl el e

Scho IfM chan IEg ing
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MODE-SUPERPOSITION SOLUTIONS FOR
MDOF SYSTEMS WITH MODAL DAMPING:
FREQUENCY-RESPONSE ANALYSIS

N
a(r).= d9() = ) ¢,7,(0)

N
- ¢r¢IP 1 iU
u(t) = ; K (- T i(2§,r,)e
The complex frequency-response function (FRF)
17 I Y ¢’ir¢"r 1
H,"Q EH,,. () = 4
| Hi(Q) = Hyyyp () Z TR Ty

School of Mechanical Engineering
Iran University of Science and Technology



Example:

%
. ¢ ¢ C ’4
:\f\'\’\:—' p 1 '_"""\l\l'\l\f\f\'-—l _..f\,\'\,\'_ p":

7 - 77777,

pi(t) = PycosQt, k =987, .
l k' = i17, m=1, ¢ =0.6284, and ¢’ = 0.0628
»Determine the system's modes
» Determine the modal mass/stiffness/damping

» Determine the complex frequency-response
functions

Q

03
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Example: the system's modes

03

k4K k—k; ]—wzhﬁrg OT{@]:

= —* +k R B Z
wf:}%’ wg_k-l;:k’

fl—%=5.00Hz, f2=5“f—;—=6.00Hz

b,

-1,

School of Mechanical Engineering
University of Science and Technology

Iran



Example: the modal properties

2 0] K, = o’M, = 987(2) = 1974,

M=d"Md = [
02] K,= %Mz 1421(2) = 2842

12568 0 ] -
256 | 1.2568
C=0Ce=l o 1500 || *=22)3142 = "0'%
¢ = < = 1080 6100
2M, w, T 2037700

School of Mechanical Engineering
Iran University of Science and Technology



Example: frequency-response functions

o 2 | |
T ¢Er¢jr 1
H,;(Q) = Py '
A D YR T T TS
— 5.066 x 10~°
Hl](Q) - ' . "y ’
1 — (£2/31.42)2 4 i (0.022/31.42)
L 3519 x 107
1 — (/37.70)2 + i (0.0222/37.70)
— 5.066 x 10~
HZI(Q) - :
1 — (2/31.42)2 + i (0.02/31.42)
3.519 x 10~

1~ (£2/37.70)2 +i (0.029/37.70)

School of Mechanical Engineering
Iran University of Science and Technology



Example: frequency-response functions

} () -
" R(Hyq)
0.00
~0.01 }—
—0.02 —
-0.03 | | ]
-0.02 -0.01 0.00 0.01 0.02

School of Mechanical Engineering
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Example: frequency-response functions

| b S(Hay)
0.03—
0.01}
R (Haq)
bl
~0.01
- x=— 497 Hz
oL
0.03 5.00 i ] | |
2002 000 0.02 0.04 0.06

School of Mechanical Engineering
Iran University of Science and Technology



Example: frequency-response functions

B EiEh l o *?]i ("-{11) f (Hz)
0.02 — | B 0.00 WL-\ —— —>
0.01 |

- | -0.01 —
f (Hz)
0.00 3>
r -0.02
-0.01 |— __
N L 1 J
| -0.03
-0.02 J | 1 .
" 4.00 5 00 5.00 7 00 4.00 5.00 6.00 7.00

School of Mechanical Engineering
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Example: u U

R R
VA P AN AV~

//////////’/////////////////////////////////’ /

NANRRNRRRRNNNY

N

ANNANNNNNNNNNN

k = 987, k' = 10, m =1,
¢ = 0.6284, ¢’ = 0.0031

»Repeat the same example with the new set of
parameters. (Note: These parameters were
chosen to give 1% damping and to give natural
frequencies separated by only 1%.)

Q

l School of Mechanical Engineering
Iran University of Science and Technology



Example: the system's modal properties

@
fi=s~=500Hz, f,=~2=>505Hz

2 27
]
o=
11 -1
T20
[1.2568 0 s 1.2568 00106
[ _ =0 g |
o’Ce=| ].2692} 2(2)(31.42)
- _ ‘, = ]..2692_ — 0.0100
w—| 1?74 0 2T 3GL
i 0 2014

School of Mechanical Engineering
Iran University of Science and Technology



Example: frequency-response functions

ﬂ S(Hy)
0.0t
R (Hyy)
—
-0.01 -
: 4.98 Hz
-0.03 |~ \ 5.02 y
® / /x
x
"—-mhx—""_
-0.05 L L '
-0.03 -0.01 0.01 0.03

School of Mechanical Engineering
Iran University of Science and Technology

0.02 —

0.01 }~ /

4 S(Fp)

R (Hoq)
0.00 P
- \‘\5,0 ':
N ‘ 4.98 Hz
-0.01 -
S— X
~0.02 ] |
~0.02 - _0.01 0.00 0.01



Example: frequency-response functions

4 R(A)
0.03 {— | | $ 3’(’:’-11)
0.01
-0.02 —
-0.01 — - ; #
- -0.04 |-
~0.03 L d . N |
4.00 5.00 600  7.00 —0.06 | | —J
4.00 5.00 6.00 7.00
=
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Dynamic Response of MDOF Systems:
Mode-Superposition Method

» Mode-Superposition Method: Principal Coordinates

» Mode-Superposition Solutions for MDOF Systems with
Modal Damping: Frequency-Response Analysis

» Mode-Displacement Solution for the Response of
MDOF Systems

» Mode-Acceleration Solution for the Response of
Undamped MDOF Systems

» Dynamic Stresses by Mode Superposition

» Mode Superposition for Undamped Systems with
Rigid-Body Modes
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