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In this paper, to address the problem of using displacement sensors in 

measuring the transverse vibration of engine accessory belt, a novel non-

contact method based on machine vision and Mask-RCNN model is 

proposed. Mask-RCNN model was trained using the videos captured by a 

high speed camera. The results showed that RCNN model had an 

accuracy of 93% in detection of the accessory belt during the test. 

Afterward, the belt curve was obtained by a polynomial regression to 

obtain its performance parameters. The results showed that normal 

vibration of the center of the belt was in the range of 2 to 3 mm, but the 

maximum vibration was 8.7 mm and happened in the engine speed of 

4200 rpm. Also, vibration frequency of the belt was obtained 124 Hz. 

Moreover, the minimum belt oscillation occurred at the beginning point 

of the belt on the TVD pulley, whereas the maximum oscillation 

occurred at a point close to the center of the belt at a distance of 16 mm 

from it. The results show that the proposed method can effectively be 

used for determination of the transvers vibration of the engine accessory 

belts, because despite the precise measurement of the belt vibration at 

any point, can provide the instantaneous position curve of all belt points 

and the equation of the belt curve at any moment. Useful information 

such as the belt point having the maximum vibration, belt slope, 

vibration frequency and scatter band of the belt vibration can be obtained 

as well. 
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1. Introduction 

The performance of some vehicle equipment 

such as lighting, air conditioning and power 

consumption depends on the performance of the 

engine accessories system, especially accessory 

belt. To ensure the health and performance of 

the belt in terms of the amount of vibrations, 

durability, slippage, etc, validation tests at 

different speeds and temperatures are designed 

and applied to engine accessory belt. These tests 

are divided into two groups of functional and 

durability tests. One of the important validation 

tests for the accessory belt, is flapping test. This 

test includes a speed sweep from idle to 

maximum speed of the engine during a little 

time [1]. When the belt resonates, large 

oscillations occurred on it. Those speeds in 

which the belt experiences its most severe 

oscillations are called critical or resonant speeds 

of the belt. The main purpose of performing the 

belt flapping test is to find these critical speeds 

because the belt failures occur in these speeds, 

since the belt will have the most fluctuations and 

consequently the largest stresses in the critical 

speeds, so this is the worst case for belt 

operation [1]. After obtaining the critical speeds, 

the durability tests of the belt are designed and 

performed at these speeds. If the belt does not 

show any failure sign after the durability test, it 

is concluded that the belt has enough useful life. 

One of the most essential aspects of the belt 

flapping test is measuring the belt transverse 

vibrations in order to identify the critical speed 

of the belt. Traditionally in engine testing 

laboratories, the measurement of transverse 

vibration is performed based on displacement 

sensors such as Laser Doppler Vibrometer 

(LDV) [2-4], proximity sensors [5] and 

electrostatic sensors [6]. In sensor-based method 

such as LDV, the sensor is first mounted on the 

engine through a fixture where the maximum 

free length of the belt is located. Then, by 

shining a laser beam on the belt strip, the belt 

oscillation during its operation is measured in 

the form of a time-domain signal. Many 

researchers have used this method so far, for 

example, Ucar et al [7] designed a fault 

detection system for automotive timing belts 

based on displacement sensor method. They 

used three optical sensors in the experiments. Hu 

et al [8] developed an electrostatic sensing-based 

measurement method for non-contact 

monitoring of belt vibration. In this research, it 

was mentioned that the measurement of 

transverse vibration in a moving belt is a 

difficult task. Also, a good comparison was 

made between the different experimental 

methods for belt vibration measurement. 

Khazaee et al [9] proposed an intelligent method 

for life prediction of timing belt of an internal 

combustion (IC) engine using vibration analysis 

and neural network model. They used LDV 

method to obtain vibration signals of the belt. 

Belt vibration measurement based on 

displacement sensors has major drawbacks; 

these sensors lose their accuracy over time. 

Also, because the sensors must be installed on 

the engine body, they need some preparing 

processes such as drilling, making fixtures, 

installation, etc. Another disadvantage of 

installing the sensors on the engine is the 

damages that may occur on the sensors in the 

long operating time due to permanent and severe 

fluctuations of the engine caused by stimulation 

of various components inside and outside the 

engine. Moreover, such instruments may be 

excessively expensive to perform in routine 

industrial applications. 

Due to the mentioned shortcomings, in order 

to update the engine validation tests that are 

required by all engine manufacturers today, it is 

necessary to develop a method for measuring 

belt vibrations that firstly does not require 

preparation and installation processes on the 

engine, and secondly to be accurate, fast, and 

without loss function over time. 

Nowadays, the use of machine vision methods 

with combination of artificial intelligence has 

many applications such as in automotive [10], 

agriculture [11] and robotics [12]. Among the 

artificial intelligence methods, deep learning 

techniques has attracted lots of attentions 

because of its high capabilities in solving 

various nonlinear complex problems [13, 14]. 

Currently, the machine vision systems equipped 

with artificial intelligence have provided 

practical solutions for IC engines relevant issues. 

In this regard, Ramamoorthy [15] developed a 

machine vision-based method for evaluating 
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honing angle of cylinder liners based on cylinder 

liner images. In another research, Lawrence et al 

[16] used a machine vision approach to 

characterize cylinder bore surface topography. 

They could estimate Abbott-Firestone curve 

parameters by processing the images of the 

cylinder liner surface and using ANN method. 

Xuyun et al [17] presented a novel fault 

detection system for aircraft engines based on 

machine vision approach and convolutional 

neural network (CNN). Capela et al [18] 

proposed an inspection machine vision-based 

system to detect the engine labels using Faster-

RCNN and YOLOv3 object detection methods. 

Rochussen and Kirchen [19] presented a robust 

image segmentation algorithm for feature 

extraction from single-cycle in-cylinder 

combustion images. 

Based on the above descriptions, to overcome 

the shortcomings of the traditional belt vibration 

measurement methods, the current paper as a 

new work, presents an efficient method based on 

machine vision and deep learning method to 

obtain the transverse vibrations of the belt, 

which has not been studied in the previous 

studies. This method, firstly, does not have the 

disadvantages of the traditional displacement 

sensor method. Secondly, it can provide more 

capabilities for the measurement. Thirdly, it has 

the potential for multiple applications, meaning 

that other applications such as fault detection of 

belt and other accessory parts, can be set up 

beside the measurement of the belt vibrations at 

the same time. The present method comprises of 

some analysis stage which is shown in Figure 1. 

2. Materials and Methods 

2.1. Experimental Setup 

The experiments were implemented on an 

inline four-cylinder gasoline engine. Table 1 

shows the engine specifications. In order to 

control the engine speed and load, the engine 

was coupled with a 190 kW eddy-current 

dynamometer. Different engine parameters such 

as speed and torque, oil temperature and 

pressure, water temperature and pressure, 

ambient temperature and pressure, throttle 

position and exhaust manifold temperature were 

measured during the tests. 

 

Figure 1: Flowchart of the present work 

Table 1: Engine specifications 

Engine type 
Gasoline 4-cylinder 

inline 

Bore × Stroke (mm) 78 × 85 

Volume (L) 1.650 

Compression ratio 11.5 

Max. Power (kW @ rpm) 83 @ 6000 

Max. Torque (Nm @ 

rpm) 
146 @ 3500-4500 

In this study, adopted from the belt flapping 

test procedure designed by PSA Peugeot Citroën 

[20], the engine speed was swept from the idle 

speed to maximum speed i.e. 6000 rpm under 

full load condition during about 25 seconds. 

Simultaneously, the video of the belt oscillations 

was captured using a high-speed camera model 

Casio Exilim EX-F1 with a rate of 1200 frames 

per second (fps). Fig. 2 shows the experimental 

test setup. Note that the experiment was repeated 

four times to observe reproducibility. 

The camera was set to capture the frame of the 

free length of the belt between the air 

compressor (AC) compressor pulley and 

torsional vibration damper (TVD) pulley, 

because this distance has the longest in the 

timing system so the maximum belt oscillations 

occur here, meaning that this area is the worst 

case for the belt oscillations. 

Belt Vibrations 
Video

Trained RCNN 
Model

Training and Testing 
Process

Traced Belt

Vibration Parameters
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Figure 2: The experimental setup 

2.2. Deep Learning Method 

Deep Learning is a branch of machine learning 

which applies algorithms inspired by the 

structure of the human brain. Deep learning lets 

computational models learn and demonstrate 

data with several levels of abstraction 

mimicking, consequently it implicitly catches 

complex structures of large-scale data [21]. 

Using Convolutional Neural Networks (CNNs), 

the explicit extraction of information from visual 

data is possible [22]. A CNN includes three 

different layers namely, pooling, convolutional 

and fully connected layers each one playing a 

specific role. CNN has extremely been 

successful in computer vision applications. A 

developed version of CNN is the Region 

Proposal Convolutional Neural Network 

algorithm (or R-CNN) [23]. In R-CNN, an 

image is split into several areas and is separately 

processed. The first RCNN version split the 

image into a large number of regions according 

to a selective search algorithm, and then it was 

fed to CNN. The great results could be obtained 

by this procedure, but the time consumed to train 

the model was huge indeed. Therefore, this 

method is not practical for real-time problems. 

The RCNN technique was further refined. 

Instead of feeding the model with a large 

number of separate images, the initial input 

image is received in order to calculate its feature 

map and then choose the regions of interest [18]. 

Due to the time needed to train the algorithm 

and to identify and categorize the objects, a 

faster version was developed namely Fast R-

CNN24. Fast R-CNN gives a quicker training 

process but it is not proper for real-time 

applications. In Faster R-CNN [25], the areas of 

interest that are fed to the network, are predicted 

and reshaped using a separated CNN. Faster R-

CNN is more appropriate for real-time detection, 

because of little time needed to implement the 

recognition on an image as well as obtaining the 

high accuracy [26]. 

Deep neural networks are properly capable of 

semantic segmentation, which plays a significant 

role in image understanding and analysis. An 

extension version of Faster-RCNN, namely 

Mask R-CNN [27] is the most advanced tool for 

image segmentation, in which the pixels of each 

object are located instead of the bounding boxes 

[18]. This version of network identifies objects 

of the image, and makes a high-quality 

segmentation mask for each case. Mask R-CNN 

was constructed by Faster R-CNN. Faster R-

CNN has two outputs for each desired object, 

class label and bounding box offset, but Mask R-

CNN is the addition of a third part that outputs 

the object mask. The extra mask output is 

different from the class and box outputs, needing 

the extraction of a much better spatial layout of 

an object. 

In this research, a Mask-RCNN with the 

configuration shown in Table 2, were used to 

segment the accessory belt from the other parts. 

Each frame of the videos from the belt 

vibrations was given to the designed network. 

The output of this network was the coordinates 

of all the pixels including the belt in the image. 

Table 2: Configuration of designed Mask-RCNN 

Backbone Resnet101 

Backbone Strides [4,8,16,32,64] 

Learning Momentum 0.9 

Learning Rate 0.001 

Mask Pool Size 14 

Number of Epochs 300 

Steps per Epoch 10 

Pool Size 7 

Loss Function 0.07 

Crankshaft

Pulley

Hydraulic 

Pulley

AC

Compressor 

Pulley

Idler 

Alternator

Pulley

Dynamic 

Tensioner

Engine

High speed Camera

LED

Accessory Belt

Camera Frame

Top View of Photography System

Front View of Accessory SystemTarget Area of Accessory System
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3. Results and Discussion 

After recording the videos from the belt 

oscillations, all videos were divided into their 

frames. Some samples of these frames are 

shown in Figure 3. 

 

 

 

 

 
Figure 3: Samples of the belt oscillation captured by 

the high speed camera 

At next stage, Mask-RCNN model was trained 

and then tested. As mentioned before, the video 

capturing process during the flapping test was 

repeated four times, meaning that four videos 

were gained from the belt oscillations during the 

experiments. In the training stage, 110 frames 

from the first video were fed to Mask-RCNN 

model as training data. To make the labeled 

data, the manual segmentation method was used 

to separate the belt from the rest of areas in 

image. Afterward, the validation and testing 

processes were implemented on the second and 

third videos with 40 and 50 frames, respectively. 

The results showed that the belt was detected in 

all frames with a high accuracy of 93%. Fig. 4 

shows two output samples of the trained Mask-

RCNN model. As it can be seen, the belt could 

be distinguished from the rest of parts in the 

images, so the trained Mask-RCNN model had 

suitable capability in detecting the belt. After 

training and testing the Mask-RCNN model and 

obtaining the detection accuracy, the trained 

model was applied on the fourth video to 

achieve the analysis results. 

 

 

 
Figure 4: Two random examples of belt detection by 

the trained Mask-RCNN model 

After that, all pixels of the detected belt were 

separated from the rest of parts in the image. 

Thus, each frame of the video was converted to 

a binary image in which the entire image was 

white and only the pixels of the belt were red. 

After separating the belt, the curve of the belt 

central axis and its equation were obtained using 

the polynomial curve fitting regression 

interpolation method [28, 29]. 

Fig. 5 illustrates the step-by-step analysis 

results for a sample frame of the video taken 

from the belt oscillation. 

Based on the belt shape, its curve was 

estimated with a 5th degree function. 

Accordingly, the following equation was 

obtained for the belt curve shown in Figure 5(d): 

 

𝑦 = −2.678 × 10−10𝑥5

+ 3.064 × 10−7𝑥4

− 0.0001𝑥3 + 0.017𝑥2

− 1.095𝑥 + 49.575 

(1) 

where x is in the range of 100 to 240 equal to 

the position of the beginning and end point of 

the belt in the original raw image, respectively. 
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Figure 5: Steps of analysis results: (a) original frame 

(b) detected belt (c) detached belt in binary image (d) 

belt curve 

Having the equation of the belt curves in each 

frame, the position of any desired point on the 

belt during the oscillation can quantitatively be 

determined. The extremum points of the belt 

during flapping, the slope of the belt and other 

parameters of the belt curve are also achievable 

by this equation. The analysis shown in Fig. 5 

was performed for each frame, and the equation 

of the belt curve was obtained for all frames of 

the total test duration. 

In the next step, to observe the changes in the 

belt vibration during the whole test, the 

oscillations of the midpoint of the belt, as an 

example, were calculated based on the above 

analysis process for all frames of the video. Fig. 

6 shows the belt center oscillations during the 

entire test. 

As can be seen, the normal vibration of the 

belt was about 2 mm, but the belt experienced 

severe oscillations at time intervals of about 4 to 

8 seconds and 16 to 21 seconds. These two time 

intervals were equivalent to the engine speeds of 

about 2500 and 4200 rpm. The maximum 

vibration occurred approximately at 19th second 

with the amplitude of 8.7 mm. In this time, the 

engine speed was 4200 rpm. According to these 

results, it can be concluded that the speeds of 

2500 and 4200 rpm were the critical speed of 

this belt. The critical speeds are among the main 

belt characteristics which are used for evaluating 

its durability [20]. Therefore, finding the critical 

speeds of the belt was one of the main purposes 

of the belt flapping test which was well done by 

the proposed intelligent system. 

 

Figure 6: Transverse vibration of the belt center 

during the flapping test 

One of the important functional and durability 

parameters of the belt which can be obtained 

from the proposed machine vision system is the 

oscillation frequency, which depends on the 

geometric design, materials and dynamic 

characteristics of the belt. The frequency of the 

oscillation can be calculated by transferring the 

time domain vibration signal into the frequency 

domain. To this end, the frequency spectrum of 

the belt vibrations is firstly obtained by FFT 

method. In the obtained spectrum, the dominant 

frequency indicates the frequency of the belt 

oscillation. For example, Fig. 7 shows the 

frequency spectrum of the belt vibration shown 

in Fig. 6. As it can be seen in this spectrum, the 

dominant frequency is 124 Hz, so the belt 

oscillation frequency is 124 Hz i.e. the belt 

oscillates 124 times per second. 

In the last stage, the envelope curve of the belt 

vibrations was obtained in order to find the 

range of the space occupied by the belt during its 

oscillation. To this end, the belt shape curves for 

each frame were plotted together in a diagram. 

By this work, the scatter band of the belt 

vibrations and its maximum and minimum 
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ranges, in other words the borders of the belt 

vibrations could be observed and calculated. Fig. 

8 shows the envelope diagram of the belt 

vibrations. Samples of the use of this diagram is 

to compare the performance of different belts, 

observing the effects of different belt materials 

and designs on the oscillation, belt failure 

analysis, help to optimally design the belt and 

the position of the pulleys, etc. According to the 

envelope diagram of the belt oscillations, it was 

found that in this belt, the smallest vibration 

occurred at the starting point of the belt on TVD 

pulley with an amplitude of about 7.9 mm, and 

the largest amplitude belonged to the horizontal 

position of 154 mm, meaning 16 mm behind the 

center of the belt, with a magnitude of 16.5 mm. 

 

Figure 7: Frequency spectrum of the belt vibration 

shown in Figure 6 

 

 

Figure 8: Belt shape curves during the entire test and 

their envelope 

One of the advantages of the proposed 

intelligent machine vision system despite its 

high accuracy is that it can be used to obtain the 

transverse vibrations of any desired point of the 

belt, whereas in the traditional experimental 

methods, the vibration of only one limited area 

of the belt can be measured by laser 

displacement sensors, so there won’t be 

information about the vibration of the rest of 

parts of the belt. Moreover, it can be possible to 

add some more features to this machine vision 

system in future such as belt fault prediction and 

determination of the belt linear velocity and 

tensioner movement pattern. In other words, the 

proposed system has potential to become a 

multi-functional system. In overall, the results 

show the high capabilities of the proposed 

intelligent method which can effectively be used 

in the novel validation tests of engine belts like 

timing and accessory belts. 

 

4. Conclusion 

In this paper, an intelligent method was 

presented to trace the movement of the engine 

accessory belt and obtain its transverse 

vibration. To this end, a belt flapping test was 

designed and performed on a gasoline engine. 

Simultaneously, the movement of the belt was 

captured during the entire test using a high speed 

camera with 1200 fps rate. By a trained Mask-

RCNN model, the belt strip was completely 

separated from the other parts of the image for 

the frames of the video. Then, the equation of 

the belt shape curve was obtained using 

polynomial regression for each frame. Finally, 

by obtaining the curve of the belt shape, the 

vibrations of any desired point on the belt 

became achievable. The results showed that the 

maximum belt vibration occurred at a point 16 

mm apart from the center of the belt with a 

magnitude of more than 8.5 mm at the engine 

speed of 4200 rpm. The results also showed that 

the frequency of the belt vibrations reached 124 

Hz. Since the proposed method could provide 

the instantaneous displacement of all belt points 

and the equation of the belt curve at any 

moment, detection of the belt point having the 

maximum vibration, belt slope, vibration 

frequency and scatter band of the belt vibration 

can be obtained as well. According to the results 

and the capabilities of the proposed method, this 

machine vision system can reliably be used as a 

substitute for the traditional method of 

measuring belt vibrations, i.e. the use of laser 

displacement sensor. 
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