Search published articles



Gh.h Payeganeh, M. Esfahanian, S. Pakdel Bonab,
Volume 4, Issue 2 (6-2014)
Abstract

In the present paper, the idea of braking energy regeneration and reusing that energy during acceleration for a refuse truck is comprehended. According to their driving cycle, the refuse trucks have a good potential for braking energy regeneration. On the other hand, hydraulic hybrid is a powertrain with high power density which is appropriate for energy regeneration. In the primary stage of this issue, the hydraulic hybrid propulsion system is designed with intention of regenerating the maximum possible kinetic energy during the refuse truck braking mode. At this stage, a non-fuzzy rule-based control strategy is applied to manage the energy flow in the hybrid powertrain. After that, the powertrain of the Axor 1828 truck and the elements of the hydraulic powertrain are modeled in MATLAB/Simulink. The modeling is performed considering the efficiencies of the powertrain elements. In the last part of the paper, a fuzzy control strategy is designed and modeled to improve the fuel consumption of the truck with hybrid powertrain. In order to see the usefulness of the designed hybrid powertrain, several simulations are organized on the vehicle model in Simulink. The driving cycle for refuse truck in Tehran is used for performing the simulations. The results state indicated that using the hydraulic hybrid powertrain decreased the fuel consumption of the refuse truck by 7 percent. In addition, this amount of reduction was improved by implementing the fuzzy control strategy. The decrease in fuel consumption was due to the regenerating of the braking energy up to 50 percent.
E. Maleki Pour , S. Golabi ,
Volume 4, Issue 2 (6-2014)
Abstract

Nowadays, automakers have invested in new technologies in order to improve the efficiency of their products. Giant automakers have taken an important step toward achieving this objective by designing continuously variable transmission systems (CVT) to continuously adapt the power of the engine with the external load according to the optimum efficiency curve of engine and reducing fuel consumption beside, making smooth start up and removing the shock caused by changing the gear ratio and making more pleasurable driving. Considering the specifications of one of Iranian automaker products (the Saipa Pride 131), a CVT with a metal pushing belt and variable pulleys have been designed to replace its current manual transmission system. The necessary parts and components for the CVT have been determined and considering the necessary constraints, its mechanism and components have been designed.
A. Ghaffari , A. Khodayari , B. Gharehpapagh , S. Salehinia ,
Volume 4, Issue 2 (6-2014)
Abstract

In this paper a control system has been designed to improve traffic conditions in car following maneuver. There are different methods to design a control system. In this paper design approach is based on the Fuzzy sliding mode control (FSMC) system. The aim of designing FSMC system is to achieve safe and desire longitudinal distance and less lateral displacement. In order to control and obtain desired longitudinal and lateral movements, suitable values of composite torque and steering angle is generated. At first to design of FSMC system, a nonlinear dynamics model of vehicle with three degrees of freedom is presented and validated with real traffic data. Then, the performance of the FSMC system has been evaluated by real car following data. At the end, the simulation results of FSMC are compared with the first and second order sliding mode control. Simulation result shows that performance of FSMC is better than sliding mode control. Also by comparing between FSMC and real driver, it is shown that FSMC is much safer than a real human driver in keeping the longitudinal distance and also the FSMC produces less lateral displacement in the lateral movement too.
H. Shojaeefard , M. Hakimollahi , M. Kashefi,
Volume 4, Issue 2 (6-2014)
Abstract

Having a full understanding of the world’s social-economic situation is the success key for industries automotive manufacturing industry is an extremely competitive one usually there is no clear guideline among automotive companies about technological causes behind their success and failure. This research provides an investigation about the world’s economic situation and the environmental situation surrounded the automotive industry, than will focus on chines auto industry. Automotive manufacturers and suppliers view China as the largest combination of automotive market and low-cost manufacturing and supply base to appear in decades. Companies are deluged with information about the potential opportunities in China, but typically know very little about what the Chinese think about their automotive future. The steady influx of automotive manufacturers and suppliers over the past ten years has provided the Chinese with firsthand experience of what the impact of a world-class, high-volume automotive industry can mean to a country.


H. Ghariblu, A. Behroozirad , A. Madandar ,
Volume 4, Issue 2 (6-2014)
Abstract

This paper concerns the design and analysis, of a ball type continuously variable transmission, (B-CVT). This B-CVT has a simple kinematic structure, and same as a toroidal CVT, transmits power by friction on the contact points between input and output discs, that are connected to each other by balls. After, a brief introduction of our B-CVT structure, the performance and traction efficiency of B-CVT is analyzed. The geometry and speed ratio of the proposed CVT is obtained. Then, by finding the contact areas between rotating elements and stress distribution through them, the torque capacity of B-CVT is computed. Next, the power loss of the system caused by various parameters such as relative arrangement of rotating elements as well as relative velocity at contact areas is found. Finally, after presenting the influence of the different geometrical and assembly conditions at efficiency of the system, the efficiency of the system compared with the efficiency of a Toroidal CVT.
J. Marzbanrad, E. Ebrahimi, M. Khosravi,
Volume 4, Issue 2 (6-2014)
Abstract

This paper focuses on the optimization of initiating dimensions of groove bearing in association with de- sired design of vehicle’s front structure which is made up of low carbon steels in the case of frontal collision. Axial bearing analysis is done numerically using nonlinear finite element code LS-DYNA. In this analysis, changes of two main parameters including measure of energy absorption of structure and maximum force of structure collision are being considered. Square structure profile is being chosen and the groves are placed on two opposite sides. Tests of collision simulation are performed for steel samples and then a mathematical equation is derived next, the initiating dimensions are optimized using Genetic Algorithm. Desired case for design of this structure part is the one which provides maximum energy absorption measure and minimum collision force in this paper, the most optimal case is an initiator with groove depth of 4.5 mm and radius of 10 mm.


S.r Das, R.p. Nayak, D. Dhupal, A. Kumar,
Volume 4, Issue 3 (9-2014)
Abstract

The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) are explored employing the analysis of variance (ANOVA). An L9 Taguchi standard design of experiments procedure was used to develop the regression models for machining responses, within the range of parameters selected. Results show that, feed rate has statistical significance on surface roughness and the machining force is influenced principally by the feed rate and depth of cut whereas , cutting speed is the most significant factor for flank wear followed by cutting speed. The desirability function approach has been used for multi-response optimization. Based on the surface roughness, machining force and flank wear, optimized machining conditions were observed in the region 147 m/min cutting speed and 0.10 mm/rev feed rate and 0.6 mm depth of cut.
S. H. Tabatabaei Oreh, R. Kazemi, N. Esmaeili,
Volume 4, Issue 3 (9-2014)
Abstract

Direct Yaw moment Control systems (DYC) can maintain the vehicle in the driver’s desired path by distributing the asymmetric longitudinal forces and the generation of the Control Yaw Moment (CYM). In order to achieve the superior control performance, intelligent usage of lateral forces is also required. The lateral wheel forces have an indirect effect on the CYM and based upon their directions, increase or decrease the amount of CYM magnitude. In this paper, a systematic and applicable algorithm is proposed to use the lateral force in the process of Yaw controlling optimally. The control systems are designed based on the proposed algorithm. This system includes Yaw rate controller and wheel slip controllers which are installed separately for each wheel. Both of the mentioned control systems are designed on the basis of the Fuzzy logic. Finally, the capabilities of the proposed control systems are evaluated in a four wheel drive vehicle, for which, the traction of each wheel can be controlled individually. It is shown that considering the lateral force effect offers significant improvement of the desired yaw rate tracking
A.h Kakaee, P. Rahnama, A. Paykani,
Volume 4, Issue 3 (9-2014)
Abstract

In this paper, a numerical study is performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode in a heavy-duty, single-cylinder diesel engine with gasoline and diesel fuels. In RCCI strategy in-cylinder fuel blending is used to develop fuel reactivity gradients in the combustion chamber that result in a broad combustion event and reduced pressure rise rates (PRR). RCCI has been demonstrated to yield low NOx and soot with high thermal efficiency in light and heavy-duty engines. KIVA-CHEMKIN code with a reduced primary reference fuel (PRF) mechanism are implemented to study injection timings of high reactivity fuel (i.e., diesel) and low reactivity fuel percentages (i.e., gasoline) at a constant engine speed of 1300 rpm and medium load of 9 bar indicated mean effective pressure (IMEP). Significant reduction in nitrogen oxide (NOx), while 49% gross indicated efficiency (GIE) were achieved successfully through the RCCI combustion mode. The parametric study of the RCCI combustion mode revealed that the peak cylinder pressure rise rate (PPRR) of the RCCI combustion mode could be controlled by several physical parameters – PRF number, and start of injection (SOI) timing of directly injected fuel.


B. Sepehri, A. Hemati,
Volume 4, Issue 3 (9-2014)
Abstract

In this paper, the 1/4 vehicle model have been simulated. The vehicle body acceleration using optimal control has been optimized. The vehicle ride comfort is achieved by using robust control, and it has been compared with optimal control. The active suspension can help the vehicle to have a good dynamic behavioral. In this paper, two degrees of freedom dynamic vibration model of a general vehicle is developed through the designation of a closed-loop and robust control system. Irregular road input is simulated as sinusoidal signals, and the vehicle vibration response is optimized. Using robust control the vehicle ride comfort has been improved, and using optimal control not only the ride comfort has been achieved, also the vehicle acceleration is optimized.
D. Younesian, M. S. Fallahzadeh,
Volume 4, Issue 3 (9-2014)
Abstract

Nonlinear vibration of parabolic springs employed in suspension system of a freight car has been studied in this paper. First, dynamical behavior of the springs is investigated by using finite element method and the obtained results are then used in vibration analysis of a railway freight car. For this purpose, dynamics of a parabolic spring subjected to a cyclic excitation has been studied in the frequency range of 2 to 15 Hz. By utilizing an experimental setup, equivalent static and dynamic stiffness and damping of the spring have been obtained and compared with theoretical results. Different classes of rail irregularities are taken into account to excite the vehicle. Bond Graph method is employed to extract the equations of motion of the system and validity of the obtained equations is investigated. Finally, a parametric study is carried out and the influence of vehicle velocity and rail irregularity on vertical acceleration of the freight car has been examined.
M. Namjoo, H. Golbakhshi,
Volume 4, Issue 3 (9-2014)
Abstract

The natural frequencies and mode shapes of pneumatic tires are predicted using a geometrically accurate, three-dimensional finite element modeling. Tire rubber materials and cord layers are represented independently using “shell element” available in COSMOS. The effects of some physical parameters such as the inflation pressure tread pattern, thickness of belts and ply angles to the natural frequencies of tires are investigated. By imposing equivalent centrifugal forces, the effect of translational speed on vibrating behavior of the tire is also studied in this work. Comparisons of numerical and experimental results are given to show the validity of the proposed model.
D. Younesian, S. Hamzavi, M.r Rostam,
Volume 4, Issue 4 (12-2014)
Abstract

In recent years, need to increase the convenience of trips in railway vehicles causes that train operators and manufacturers focus on reducing the noise level which is sensed by passengers. In this paper, first the state of modeling acoustic noise in cab train is discussed and natural frequencies and acoustic mode shapes are derived and then formulation of acoustic pressure in the cab will be obtained. By utilizing field testing, the noise produced by diesel engine in the cabin of Pardistranset train (source of undesirable noise), has been measured and is used in simulating. In order to reduce the acoustic pressure, a secondary noise source is used which its Stimulation signal is obtained by phased PID controller. Then, active noise control will be investigated in two cases of single-channel and multi-channel. The result of actuating the controller shows that in central frequencies of one octave band, there is a reduction in the sound pressure level, loudness, and sound loudness level.
J. Reza Pour, B. Bahrami Joo, A. Jamali, N. Nariman-Zadeh,
Volume 4, Issue 4 (12-2014)
Abstract

Robust control design of vehicles addresses the effect of uncertainties on the vehicle’s performance. In present study, the robust optimal multi-objective controller design on a non-linear full vehicle dynamic model with 8-degrees of freedom having parameter with probabilistic uncertainty considering two simultaneous conflicting objective functions has been made to prevent the rollover. The objective functions that have been simultaneously considered in this work are, namely, mean of control effort (MCE) and variance of control effort (VCE).The nonlinear control scheme based on sliding mode has been investigated so that applied braking torques on the four wheels are adopted as actuators. It is tried to achieve optimum and robust design against uncertainties existing in reality with including probabilistic analysis through a Monte Carlo simulation (MCS) approach in multi-objective optimization using the genetic algorithms. Finally, the comparison between the results of deterministic and probabilistic design has been presented. The comparison of the obtained robust results with those of deterministic approach shows the superiority robustness of probabilistic method.
S. M. Mousavi G, A. Dashti,
Volume 4, Issue 4 (12-2014)
Abstract

Induction motors are the most commonly used in the traction industries and electric vehicles, due to their low primary cost, low maintenance costs, and good performance. Speed identification is needed for the induction motor drives. However, using of speed sensors in the induction motor drives is associated with problems such as, extra cost, reduced reliability, added mounting space, etc.. Therefore, many of the recent researches had been dedicated to sensor less induction motor drives. In the induction motor, the rotor speed is estimated using measured stator voltages and currents of the induction motor, as the sensor less drive. The rotor speed for sensor less induction motor drives can be estimated by various techniques, which is designed with respect to required accuracy and sensitivity against induction motor parameter variation. In this paper, comprehensive review of different induction motor speed estimation techniques for traction applications, their special features and advantages is presented.
M. Fathian, A.r. Jafarian-Moghaddam , M. Yaghini ,
Volume 4, Issue 4 (12-2014)
Abstract

Vehicular ad-hoc network (VANET) is an important component of intelligent transportation systems, in which vehicles are equipped with on-board computing and communication devices which enable vehicle-to-vehicle communication. Consequently, with regard to larger communication due to the greater number of vehicles, stability of connectivity would be a challenging problem. Clustering technique as one of the most important data mining techniques is a possible method that can improve the stability of connectivity in VANET. Stable communication within a VANET leads to enhanced driver safety and better traffic management. Therefore, this paper presented a novel clustering algorithm based on ant system-based algorithm called IASC in order to provide a fast clustering algorithm with high accuracy and improve the stability of VANET topology. A comparative study was proposed to analogize the results of the proposed algorithm with six VANET clustering algorithms in the literature which were taken as benchmarks. Results revealed improvement in stability and overhead on VANET.
S. A. Milani, S. Azadi,
Volume 4, Issue 4 (12-2014)
Abstract

Nowadays, the use of small vehicles is spreading among urban areas and one sort of these vehicles are three-wheeled vehicles (TWVs) which can be competitive with four-wheeled urban vehicles (FWVs) in aspects such as smallness, simple manufacturing, and low tire rolling resistance, fuel consumption and so on. The most critical instability associated with TWVs is the roll over. In this paper a tilt control mechanism has been modeled which can reduce the danger of roll over by leaning the vehicle towards the turning center in order to decrease the amount of lateral load transfer (LLT), and by doing so, system combines the dynamical abilities of a passenger car with a motorcycle. A 3 degree of freedom vehicle model is simulated at constant speed in MATLAB-Simulink environment and a fuzzy algorithm is developed to control such a non-linear system with appropriate tilting torque. Results are interpreted in presence and absence of controller with different longitudinal speeds and steering inputs the results are also compared to behavior of a similar FWV and this is concluded that the tilt control system could countervail deficiencies of the TWV compared to the FWV.
H. Biglarian, S. M. Keshavarz, M. Sh. Mazidi, F. Najafi,
Volume 4, Issue 4 (12-2014)
Abstract

Many studies have been done on hybrid vehicles in the past few years. The full hybrid vehicles need a large number of batteries creating up to 300 (V) to meet the required voltage of electric motor. The size and weight of the batteries cause some problems. This research investigates the mild hybrid vehicle. This vehicle includes a small electric motor and a high power internal combustion engine. In most cases the car’s driving force is created by an internal combustion part. A small electric motor, which can operate as engine starter, generator and traction motor, is located between the engine and an automatically shifted multi-gear transmission (gearbox). The clutch is used to disconnect the gearbox from the engine when needed such as during gear shifting and low vehicle speed. The power rating of the electric motor may be in the range of about 15% of the IC engine power rating. The electric motor can be smoothly controlled to operate at any speed and torque, thus, isolation between the electric motor and transmission is not necessary. The present study evaluates the properties of the mild hybrid vehicle, its structure and performance and proposes an energy control model for its optimum operation.
H. Sadighi Dizaji, S. Jafarmadar,
Volume 4, Issue 4 (12-2014)
Abstract

If an air flow is injected into a liquid fluid, many ambulant air bubbles are formed inside the fluid. Air bubbles move inside the liquid fluid because of the buoyancy force, and the mobility of these air bubbles makes sizable commixture and turbulence inside the fluid. This mechanism was employed to enhance the heat transfer rate of a horizontal double pipe heat exchanger in this paper. However it can be used in any other type of heat exchanger. Especially, this method can be expanded as a promising heat transfer improvement technique in automotive cooling system, for instance in radiator which contains of water or other liquid fluid. Bubbles were injected via a special method. Present type of air bubbles injection and also the use of this mechanism for double tube heat exchanger have not been investigated before. Results are reported for varying bubble inlet parameters. The main scope of the present work is to experimentally clarify the effect of air bubble injection on the heat transfer rate and effectiveness through a horizontal double pipe heat exchanger.
B. Mashhadi, H. Mousavi, M. Montazeri,
Volume 5, Issue 1 (3-2015)
Abstract

This paper introduces a technique that relates the coefficients of the Magic Formula tire model to the physical properties of the tire. For this purpose, the tire model is developed by ABAQUS commercial software. The output of this model for the lateral tire force is validated by available tire information and then used to identify the tire force properties. The Magic Formula coefficients are obtained from the validated model by using nonlinear least square curve fitting and Genetic Algorithm techniques. The loading and physical properties of the tire such as the internal pressure, vertical load and tire rim diameter are changed and tire lateral forces for each case are obtained. These values are then used to fit to the magic formula tire model and the coefficients for each case are derived. Results show the existing relationships between the Magic Formula coefficients and the loading and the physical properties of the tire. In order to investigate the effectiveness of the method, different parameter values are selected and the lateral force for each case are obtained by using the estimated coefficients as well as with the simulation and the results of the two methods are shown to be very close. This proves the effectiveness and the accuracy of the proposed method.

Page 4 from 10     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb